Комета галлея

Структура.

В центре комы располагается ядро – твердое тело или конгломерат тел диаметром в несколько километров. Практически вся масса кометы сосредоточена в ее ядре; эта масса в миллиарды раз меньше земной. Согласно модели Ф.Уиппла, ядро кометы состоит из смеси различных льдов, в основном водяного льда с примесью замерзших углекислоты, аммиака и пыли. Эту модель подтверждают как астрономические наблюдения, так и прямые измерения с космических аппаратов вблизи ядер комет Галлея и Джакобини – Циннера в 1985–1986.


Когда комета приближается к Солнцу ее ядро нагревается, и льды сублимируются, т.е. испаряются без плавления. Образовавшийся газ разлетается во все стороны от ядра, унося с собой пылинки и создавая кому. Разрушающиеся под действием солнечного света молекулы воды образуют вокруг ядра кометы огромную водородную корону. Помимо солнечного притяжения на разреженное вещество кометы действуют и отталкивающие силы, благодаря которым образуется хвост. На нейтральные молекулы, атомы и пылинки действует давление солнечного света, а на ионизованные молекулы и атомы сильнее влияет давление солнечного ветра.

Поведение частиц, формирующих хвост, стало значительно понятнее после прямого исследования комет в 1985–1986. Плазменный хвост, состоящий из заряженных частиц, имеет сложную магнитную структуру с двумя областями различной полярности. На обращенной к Солнцу стороне комы формируется лобовая ударная волна, проявляющая высокую плазменную активность.

Хотя в хвосте и коме заключено менее одной миллионной доли массы кометы, 99,9% света исходит именно из этих газовых образований, и только 0,1% – от ядра. Дело в том, что ядро очень компактно и к тому же имеет низкий коэффициент отражения (альбедо).

Потерянные кометой частицы движутся по своим орбитам и, попадая в атмосферы планет, становятся причиной возникновения метеоров («падающих звезд»). Большинство наблюдаемых нами метеоров связано именно с кометными частицами. Иногда разрушение комет носит более катастрофический характер. Открытая в 1826 комета Биелы в 1845 на глазах у наблюдателей разделилась на две части. Когда в 1852 эту комету видели в последний раз, куски ее ядра удалились друг от друга на миллионы километров. Деление ядра обычно предвещает полный распад кометы. В 1872 и 1885, когда комета Биелы, если бы с нею ничего не случилось, должна была пересекать орбиту Земли, наблюдались необычайно обильные метеорные дожди. См. также МЕТЕОР; МЕТЕОРИТ.

Иногда кометы разрушаются при сближении с планетами. 24 марта 1993 на обсерватории Маунт-Паломар в Калифорнии астрономы К. и Ю.Шумейкеры совместно с Д.Леви открыли недалеко от Юпитера комету с уже разрушенным ядром. Вычисления показали, что 9 июля 1992 комета Шумейкеров – Леви-9 (это уже девятая открытая ими комета) прошла вблизи Юпитера на расстоянии половины радиуса планеты от ее поверхности и была разорвана его притяжением более чем на 20 частей. До разрушения радиус ее ядра составлял ок. 20 км.

Таблица 1. Основные газовые составляющие комет
Таблица 1. ОСНОВНЫЕ ГАЗОВЫЕ СОСТАВЛЯЮЩИЕ КОМЕТ
Атомы Молекулы Ионы
H H2O H2O+
O OH H3O+
C C2 OH+
S C3 CO+
Na CN CO2+
Fe CH CH+
Co CO CN+
Ni HCN  
  3CN  
  HCO  

Растянувшись в цепочку, осколки кометы удалились от Юпитера по вытянутой орбите, а затем в июле 1994 вновь приблизились к нему и столкнулись с облачной поверхностью Юпитера.

Как кометы получают свое название?

История наблюдения комет насчитывает более 2000 лет, в течение которых использовалась несколько схем присвоения имен каждой из комет. На сегодняшний день некоторые из комет могут иметь более одного имени.

Самая первая система характеризовалась тем, что кометы получали имя в честь года их обнаружения (например, Великая комета 1680 года). Позже появилось соглашение астрономов о том, что в названиях комет будут использоваться имена людей, связанных с открытием (например, комета Хейла-Боппа) или первого подробного исследования (например, комета Галлея).

Комета C/1995 O1 (Хейла — Боппа)

С 20-го века технологии постоянно развивались и количество открытий росло с каждым годом, поэтому возникла необходимость создания более универсальной системы с использованием специальных чисел.

Изначально кометам присваивались коды в том порядке, в котором кометы проходили перигелий (например, комета 1970 II). Но и эта система не смогла просуществовать долго, потому что и она не могла справиться с числом ежегодных открытий. Так с 1994 года появилась новая система — присваивается код на основе типа орбиты и даты обнаружения (например, C / 2012 S1):

  • P / обозначает периодическую комету, определенную для этих целей как любая комета с орбитальным периодом менее 200 лет или подтвержденными наблюдениями при более чем одном проходе перигелия;
  • C / обозначает непериодическую комету, то есть любую комету, которая не является периодической в соответствии с предыдущим пунктом;
  • X / указывает на комету, для которой невозможно рассчитать орбиту (обычно кометы их исторических наблюдений);
  • D / указывает на периодическую комету, которая исчезла, разбилась или была потеряна. Примеры включают Комету Лекселла (D / 1770 L1) и Комету Шумейкер-Леви 9 (D / 1993 F2);
  • A / указывает на объект, который был ошибочно идентифицирован как комета, но на самом деле является малой планетой. Но в течение многих лет это название не использовалось, но в 2017 году ее применили для Оумуамуа (A / 2017 U1), а затем ко всем астероидам на орбитах похожих на кометы;
  • I / обозначает межзвездный объект. Это обозначение появились совсем недавно, в 2017 году, чтобы дать Оумуамуа (1I / 2017 U1) наиболее правильный и точный статус. По состоянию на 2019 год единственным другим объектом с этой классификацией является комета Борисова (2I / 2019 Q4).

1I/Оумуамуa — первый обнаруженный межзвёздный объект, пролетающий через Солнечную систему (в представлении художника)

Знаменитые кометы

Если появляется возможность наблюдать прохождение космического объекта с Земли невооруженным глазом, то часто это захватывающее зрелище.

Виртанена

Она открыта американским астрономом К. Виртаненом в 1948 году. Классификация – короткопериодическая, каждые 5,5 лет она возвращается. Другое название – Изумрудная, так ее прозвали из-за характерного зеленого свечения. Окрестили ее и Рождественской в 2018 году. При очередном возвращении яркость небесного тела увеличивалась до середины декабря. Ее можно было наблюдать в Северном полушарии около Плеяд без увеличительных приборов до начала января. Это самая эффектная «хвостатая звезда» последних лет.

Чурюмова Герасименко

Открыта 23.10 1969 К. Чурюмовым в Киеве в результате изучения фотопластинок другого объекта, снятого С. Герасименко. В августе 2014 года к комете подошел космический аппарат «Розетта», для сопровождения ее к Солнцу. 12.11 на ядро спустили аппарат «Фила» для изучения химического состава. Миссия Rosetta является проектом Европейского космического агентства. Изучение космического тела поможет объяснить эволюцию Солнечной системы и возникновение воды на Земле.

Галлея

Благодаря успешной миссии Rosetta, Чуржумов-Герасименко теперь самая известная комета. Ранее это была Галлея. Она появляется каждые 76 лет уже более 20 веков.

Ее возвращение предсказал астроном Эдмон Галлей в 18 веке. Комета была первой, к которой запустили космический зонд «Джотто». Он пролетел мимо космического тела в 1986 году на расстоянии 600 км.

В 2061 году Галлея снова появится в Солнечной системе — и будет сиять в небе великолепным хвостом.

Хейла Боппа

1 апреля 1997 года комета Хейла-Боппа достигла наибольшей яркости. Она выглядела как очень яркая звезда на небе, исключая Сириус. Она оставалась видимой невооруженным глазом в течение 18 месяцев, вдвое дольше, чем предыдущий рекордсмен — Великая 1811 года.

Уэста

Эта комета была ошеломляющим зрелищем на предрассветном мартовском небе 1976 года, яркой, с высоким и широким пылевым хвостом. Она была обнаружена 05.11.1975 г. датским астрономом Ричардом Мартином Вестом на фотографических пластинах. Уже в декабре 1975 года выяснилось, что космический объект выглядел ярче, чем первоначально ожидалось. Это была самая красивая комета ХХ  века.

Шумейкера-Леви

Печально известное космическое тело, разорванное Юпитером на 21 осколок, затем полностью им поглощенное. Подробнее см. материал сайта «Газовые гиганты»

Что было после Галлея

В последующие годы комета Галлея регулярно возвращалась к Земле с присущей ей пунктуальностью, а астрономы занимались ее изучением. И каждое новое предсказание появления «хвостатой звезды» было все более точным.

Кроме того, астрономы попытались «отмотать» время назад и показать ранние прилеты кометы Галлея, используя наблюдения, зафиксированные в исторических документах. Для этого они изучали китайские и европейские хроники. Подобными исследованиями занимались, например, Кауэлл и Кроммелин. В начале XX века им удалось довольно точно рассчитать визиты небесного тела до 1301 года. Российский астроном Вильев изучал появления объекта в период с 451 года н. э. до 622 года до н. э.

Прилет кометы Галлея в 1835 году был заурядным событием, интересным разве что для небольшого числа астрономов. Однако ее следующий визит стал по-настоящему ярким и триумфальным. В 1910 году о скором появлении «звезды смерти» трубили практически все СМИ, что вызвало в обществе настоящий психоз. Ранее ученые смогли обнаружить в ее хвосте цианиды, токсические свойства которых к тому времени были хорошо известны. Более того, ученые подсчитали, что в этот раз Земля непременно должна через неё пройти. Также был запущен слух, что комета обязательно несет какие-то неизвестные и ужасные бактерии, которые, безусловно, добьют тех, кто не умрет от цианида.

Началась паника, любовно подогреваемая журналистами. Люди боялись выходить на улицу, кончали жизнь самоубийством, большим спросом стали пользоваться специальные таблетки «от кометы» и защитные зонты. Данная истерия даже была отображена в литературе: в 1913 году Конан Дойль написал книгу с похожей историей. Она называлась «Отравленный пояс».

Для астрономов 1910 год стал настоящим праздником: за все время наблюдений они были наиболее подготовлены к встрече «небесной гостьи». Она приблизилась к Земле на минимальное расстояние – 0,15 а. е. Комету можно было наблюдать по всему земному шару и ученые всего мира пользовались этой возможностью на полную катушку. Кроме того, наука впервые получила шанс исследовать интереснейший объект с помощью спектроскопических методов, что дало дополнительные данные о ее составе. Ученые выяснили, что в состав входит водород, углерод и кислород, ряд металлов, азот и силикаты. Было сделано около 500 фотографий, получено более 100 спектрограмм.

Что такое кометы?

Кометы это большие космические объекты состоящие из замороженных газов, камней и пыли, которые вместе с остальными небесными телами Солнечной системы вращаются вокруг звезды. Они образовались после сложных процессов, во время которых зарождались планеты и Солнце. В своем изначальном состоянии кометы довольно крупны и могут быть размером с целые города. Но в процессе их жизненного цикла, когда они находятся на орбите Солнца, кометы постепенно нагреваются по мере приближения к источнику тепла, теряя тем самым свою массу.


Солнце мало того, что нагревает их, оно еще и притягивает частицы, из-за чего и появляются огромные хвосты, простирающиеся на многие миллионы километров, озаряя темноту космоса. То, что удерживает комету в движении и направляет ее путь, это гравитация со всех планет и звезд, вблизи которых она проходит. Когда комета приближается к Солнцу, она движется все быстрее и быстрее, потому что чем ближе объект к источнику гравитации, тем сильнее она на него действует. Хвост кометы не только будет быстрее двигаться, но еще становиться длиннее, так как большее количество веществ будет испаряться.

Путешествие комет

Комета Чурюмова-Герасименко

Безобразный лик кометы преображается, когда она покидает стадо и приближается к Солнцу. В этот момент комета претерпевает мгновенное превращение. Она вытягивается по ночному небу длинной сияющей полосой, приводя людей в ужас и восторг. Какая же сила выгоняет комету из Облака Оорта? Естественно, гравитация. Вот каким образом это происходит. Солнце стремительно летит в пространстве и тащит за собой охапку планет, их спутников и комет. Путь Солнца пролегает среди звезд Млечного Пути. Стадо комет, увлекаемое Солнцем, иногда пролетает поблизости от другой звезды. Сила ее гравитации производит возмущение в Облаке Оорта, сдвигая кометы с их привычных положений

Потревоженная комета покидает свое место и летит в пространство. Она может выйти из поля тяготения Солнца и отправиться в самостоятельное путешествие, чтобы когда – нибудь порадовать своим блистательным хвостом жителей других планетных систем. Но большинство комет, стронутых с места, отправляется в путь к Солнцу. Это немыслимо медленное путешествие. Иногда комете требуется несколько миллионов лет, чтобы достичь внутренних областей Солнечной системы. Через многие столетия такого эпического переселения кометы Солнце, когда то бывшее тусклой звездой на ее небосклоне, вдруг предстает перед кометой, как большой сверкающий диск.

Каждый раз, проходя вблизи Солнца, комета теряет 0,1 процента своего льда. Этот лед испаряется, образуя хвост кометы. Примерно после тысячи прохождение кометы мимо Солнца лед из вещества кометы исчезнет полностью, оставив от кометы только мелкие камешки и пыль.

Направление хвоста комет

Комета начинает ощущать дуновение солнечного ветра — потока солнечной радиации. Кристаллы льда и пылевые частицы отрываются от тела кометы, лед испаряется, образуя хвост, состоящий из текущего газа. Под воздействием солнечной радиации газы в хвосте кометы начинают светиться. Когда комета проносится мимо Земли, мы узнаем об этом по ее горящему хвосту, отчетливо видимому в ночном небе.

Комета может пройти вокруг Солнца по огромной петле, чтобы через миллион лет вновь появиться внутри Солнечной системы. Комета Галлея, которую мы в последний раз видели в 1985 году, совершает свой оборот вокруг Солнца по укороченной петле за 76 лет. Она проходит близ Земли, огибает Солнце, уходит за Плутон, выполняет головокружительный вираж и вновь направляется к Солнцу.

Версии о происхождении кометы Галлея

Существует предположение, что подобные небесные тела ранее были долгопериодическими кометами и перешли в другой класс только благодаря влиянию силы притяжения планет – гигантов: Юпитера, Сатурна, Урана и Нептуна. В таком случае наша нынешняя постоянная гостья могла образоваться в облаке Оорта — запредельной области нашей Солнечной системы.

Существует также версия о другом происхождении кометы Галлея. Допускается образование комет в пограничной области Солнечной системы, где расположились транснептуновские объекты. По многим астрофизическим параметрам малые тела в этой области очень схожи с кометой Галлея. Речь идет о ретроградной орбите объектов, сильно напоминающей орбиту нашей космической гостьи.

Основная информация о небесном теле

Входя в группу короткопериодичных, комета Галлея имеет вытянутую форму, напоминающую картофелину, а в её составе присутствуют метан, вода, углерод, аммиак и ряд других веществ, в частности, силикатов, вкрапленных в лед. Под воздействием солнечныхлучей, которое постепенно усиливается, льдистая масса расплавляется, в результате чего образуется газопылевое облако, которое называют хвостом. Главное, что нужно знать о комете Галлея:

  • масса составляет 2,2⋅1014 килограмм;
  • размеры — 15×8×8 километров;
  • структура ядра – рыхлая, включает обломки;
  • средние показатели плотности — 600 кг/м³;
  • альбедо (количество отражаемого солнечного света) – 4%;
  • диаметр хвоста – до 1 миллиона километров;
  • расстояние обнаружения – от 11 а.е.

Согласно примерным подсчетам на нынешней орбите небесное тело находится примерно 16-200 тысяч лет, а происхождение связывают с поясом Койпера. Точные возрастные параметры рассчитать сложно из-за отсутствия полей гравитации. Есть версия, что родиной кометы является облако Оорта вокруг Солнечной системы.

Чем кометы отличаются от астероидов и метеоритов?

Отличие кометы от метеорита и астероида Метеоры связаны с яркими вспышками в небе, которые часто называются “падающими звездами”. Метеороиды — это объекты в космосе, размеры которых варьируются от зерен пыли до мелких астероидов. По сути это просто камни, летающие по космосу. Когда метеороиды попадают в атмосферу Земли (или другой планеты, например, Марса) на высокой скорости и сгорают, огненные шары или “падающие звезды” называются метеорами. Когда метеороид переживает путешествие через атмосферу и падает на землю, его называют метеоритом. Все это зависит от размера космического тела.

Астероид, иногда называющиеся малыми планетами, являются каменными крупными осколками без атмосферы, которые остались после первых ступеней формирования нашей Солнечной системы около 4,6 миллиардов лет назад. Большая часть находится между Марсом и Юпитером. Размеры астероидов сильно варьируются — они могут достигать в диаметре 530 километров или же быть совсем маленькими и достигать всего 10 метров. Главным отличием астероида и кометы является их химический состав.

Интересный факт: общая масса всех астероидов в Солнечной системе меньше массы Луны.

Характеристика комет и их отличие друг от друга

Несмотря на то, что кометы — явление для космоса достаточно распространенное, видеть летящую комету повезло далеко не всем. Все дело в том, что по космическим меркам полет этого космического тела — явление часто. Если сравнивать период обращения подобного тела, ориентируясь на земное время – это довольно большой промежуток времени.

Основное отличие комет от других космических объектов заключается в форме их орбит. Если планеты двигаются в правильном направлении, по круговым орбитам и лежат в одной плоскости, то комета несется в пространстве совершенно иначе. Эта яркая звезда, внезапно появившаяся на небосклоне, может двигаться в правильном или в обратном направлении, по эксцентрической (вытянутой) орбите. Такое движение влияет на скорость кометы, которая является самой высокой среди показателей всех известных планет и космических объектов нашей Солнечной системы, уступая только нашему главному светилу.

Траектория движения кометы

Не совпадает и плоскость орбиты кометы с эклиптической плоскостью нашей системы. Каждая небесная гостья имеет свою орбиту и соответственно свой период обращения. Именно этот факт и лежит в основе классификации комет по периоду обращения. Существует два вида комет:

  • короткопериодические с периодом обращения от двух, пяти лет до пары сотен лет;
  • долгопериодические кометы, совершающие оборот по орбите с периодом от двух, трех сотен лет до миллиона лет.

К первым относятся небесные тела, которые достаточно быстро двигаются по своей орбите. Среди астрономов принято обозначать такие кометы префиксами Р/. В среднем период обращения короткопериодических комет составляет менее 200 лет. Это самый распространенный вид комет, встречаемый в нашем околоземном пространстве и пролетающий в поле зрения наших телескопов. Самая известная комета Галлея совершает свой бег вокруг Солнца за 76 лет. Другие кометы гораздо реже посещают нашу солнечную систему, и мы редко когда становимся свидетелями их появления. Их период обращения составляет сотни, тысячи и миллионы лет. Долгопериодические кометы обозначаются в астрономии префиксом С/.

Траектория движения долгопериодической кометы

Считается, что короткопериодические кометы стали заложницами силы притяжения крупных планет солнечной системы, сумевших вырвать этих небесных гостей из крепких объятий дальнего космоса в районе пояса Койпера. Долгопериодические кометы — это более крупные небесные тела, прилетающие к нам из дальних уголков облака Оорта. Именно эта область космоса является родиной всех комет, которые регулярно наведываются с визитом к своей звезде. Через миллионы лет с каждым последующим визитом в солнечную систему размеры долгопериодических комет уменьшаются. В результате такая комета может перейти в разряд короткопериодических, сократив срок своей космической жизни.

Падение кометы Шумейкера-Леви 9

Падение в июле 1994 году короткопериодической кометы Шумейкера-Леви 9 на Юпитер стало ярчайшим событием в истории астрономических наблюдений за околоземным пространством. Комета вблизи Юпитера раскололась на фрагменты. Самый крупный из них имел размеры более двух километров. Падение небесной гостьи на Юпитер продолжалось в течение недели, с 17 по 22 июля 1994 года.

Всего известно более 400 короткопериодических комет, которые регулярно посещают нас. Большое количество долгопериодических комет прилетает к нам из дальнего, открытого космоса, рождаясь в 20–100 тыс. а.е. от нашей звезды. Только в XX веке таких небесных тел зафиксировано более 200. Наблюдать такие удаленные космические объекты в телескоп было практически невозможно. Благодаря телескопу Хаббл появились снимки уголков космоса, на которых удалось обнаружить полет долгопериодической кометы. Этот далекий объект выглядит, как туманность, украшенная хвостом длиной в миллионы километров.


Снимок самой далекой кометы

Из чего состоит

Давайте теперь познакомимся поближе с космической странницей. В последний свой прилет в 1986 году, комета Галлей не дала возможности полюбоваться собой с Земли, наиболее близкая точка орбиты была за Солнцем. Но зато это удалось блестяще сделать группе космических аппаратов, которым дали название «Армада Галлея» —межпланетные советские станции «Вега-1» и «Вега-2», два японских космических аппарата «Сакигакэ» и «Суйсэй», а также космический зонд от Европейского космического агентства «Джотто».

Были дополнены ранее известные данные и получены новые сведения. Благодаря изображениям, которые были получены от станций, только «Вега-2» передала больше тысячи снимков, определили из чего состоит ядро кометы, его размер, направление вращения оси, и ещё много другого полезных.

Полный оборот вокруг Солнца комета Галлея совершает примерно от 74 до 79 лет, в среднем получается период в 76 лет. Такая разница обусловлена влиянием других планет, к примеру, её запоздание в 1758 году вызвали попавшиеся ей навстречу Сатурн и Юпитер, притормозившие её движение своим гравитационным обаянием.

Почему навстречу? В отличие от планет, которые двигаются в одном направлении, по орбитам близким к окружности, комета Галлея, имеет очень вытянутую орбиту, которая наклонена к эклиптической плоскости на 163 градуса и движется она в противоположном направлении. Вокруг оси вращение происходит за 54 часа.

Комета Галлея имеет ядро, по космическим меркам, довольно небольшое, неправильной формы 8х8х16 километров. Содержит, примерно 50 процентов льда, включающий в себя воду, углерод, аммиак, метан, а также другие газы. Другая же часть состоит из пыли и каменных обломков. На снимках, что были получены, удалось разглядеть, что на поверхности ядра присутствуют кратер, горные образования, впадины.

Находится ядро в твердом состоянии, но по мере того, как происходит приближение к Солнцу, начинают закипать замерзшие газы и вода. Вокруг ядра появляется кома — облако шаровидной формы, состоящее из газа и космической пыли. Испаряющиеся газы относят в сторону пыль, входящую в состав ядра. Пылевые частички, в свою очередь, начинают отражать солнечный свет, и кому становится видно. Вот такая своеобразная голова имеется у любой кометы, строение-то одно и то же. В своих размерах кома может достигнуть больше ста тысяч километров. В каком состоянии находится вещество ядра кометы мы рассмотрели. Вывод о том, что ядро у кометы мало и состав головы кометы является сильно разряженным, сделал Василий Яковлевич Струве, еще в далеком 1835 году.

Считается, что у кометы всего один хвост, на самом деле астрономы наблюдали кометы и без хвоста, известно также о комете с двумя хвостами, но это уже история для другого повествования.

Попробуем теперь разобраться как образуется хвост кометы. Малое небесное тело все ближе подлетает к Солнцу, голова все больше расширяется. Солнечный ветер с огромной силой сбивает с комы газ и пыль, ультрафиолет воздействует на молекулы газов, ионизирует их, чем и обусловлено образование хвостов комет. Затем ионы разгоняются солнечным ветром, поэтому хвост кометы всегда смотрит в противоположную сторону от Солнца. Большое облако ионов и пыли начинает вытягиваться в своеобразный и длинный шлейф, размеры такого хвоста могут достигать около ста миллионов километров. Получается такая картина: летит комета к Солнцу, вначале головой вперед, сзади красиво сверкает хвост. Облетает Солнце и возвращается обратно, но теперь вначале идет хвост, а потом голова. Скорость солнечного ветра не всегда одинакова, и достигает от 300 км в секунду до 1200 км/с, что приводит к изменениям размера хвоста. Вот почему длина хвоста кометы не всегда одинакова. Иногда его попросту обрывает.

Ученые подсчитали, что запаса льда, имеющийся у ядра, позволит только несколько десятков прогулок до Солнца, потом она растеряет свой блеск, в виде шикарного хвоста, и превратится в обычный, не примечательный астероид, но произойдет это нескоро. А пока Комета Галлея за один такой облет вокруг Солнца худеет на 380 миллионов тонн.

Комета

Астрофизические особенности кометы

Помимо своего достаточно частого появления комета Галлея обладает интереснейшими особенностями.

Это единственное из хорошо изученных космических тел, которое в момент сближения с Землей двигается с нашей планетой на встречных курсах. Эти же параметры наблюдаются и по отношению к движению других планет нашей звездной системы. Отсюда и достаточно широкие возможности для наблюдения за кометой, которая совершает свой полет в противоположном направлении по сильно вытянутой эллиптической орбите.

Эксцентриситет составляет 0,967 е и является одним из самых высоких в Солнечной системе. Только у Нереиды, спутника Нептуна, и у карликовой планеты Седны имеются орбиты с столь схожими параметрами.

Орбита кометы

Эллиптическая орбита кометы Галлея имеет следующие характеристики:

  • длина большой полуоси орбиты составляет 2,667 млрд. км;
  • в перигелии комета удаляется от Солнца на расстояние 87,6 млн. км;
  • при прохождении кометы Галлея вблизи Солнца в афелии расстояние до нашей звезды составляет 5,24 млрд. км;
  • долгота восходящего узла — около 58°
  • период обращения кометы по Юлианскому календарю составляет в среднем 75 лет;
  • скорость кометы Галлея при движении по орбите составляет 45 км/с;
  • наклонение орбиты равно 162,3°.

Все приведенные данные о комете стали известны в результате наблюдений, сделанных в течение последних 100 лет, в период с 1910 года по 1986 года.

Первые достижения

В 1673 году Галлей поступает в Куинз-колледж в Оксфорде

В университете на способного молодого человека обращает внимание Джон Флемстид – первый Королевский астроном и директор Гринвичской обсерватории. Вместе с Флемстидом Эдмунд с начала 1675 года проводит первые исследования

В 1676 году Галлей в издании Королевского общества «Новости философии» публикует собственную научную работу «Об орбитах планет». В ней молодой ученый описал наблюдения затенения Луной Марса 21 августа. На их основании он вывел неравенство в скорости движения Юпитера и Сатурна, а также обнаружил вековое ускорение Луны, свидетельствующее о ее постоянном приближении к Земле.

В этом же году юноша бросает обучение. Под покровительством короля Карла II и при финансовой поддержке отца он отправляется на остров Святой Елены в Южной Атлантике – самые южные земли Великобритании.

Здесь Галлей полтора года изучает звезды Южного полушария. Вернувшись в Англию в ноябре 1679 года, он издает «Каталог Южного неба», в котором публикует описания для 341 звезд, не видимых из Европы.


Эдмунд Галлей также представил новый способ определения расстояния от Земли до Солнца – астрономическую единицу. Метод основан на наблюдении прохождении Венеры по диску Солнца. Сегодня а.е. – официально принятая величина измерения.

За свои труды Галлей был награжден званием магистра астрономии в Оксфорде, получил научную степень без экзаменации и стал членом Лондонского королевского общества – ни до, ни после никто не удостаивался этой чести в столь раннем возрасте и без полного образования.

Дальнейшие открытия

Успех юноши привел к разладу отношений с Флемстидом. Королевский астроном всячески препятствовал научной карьере Галлея.

Однако Эдмунда тогда не интересовало официальное признание. В 1680 году он отравляется в путешествие по Европе. Во Франции совместно с Кассини проводит астрономические наблюдения. А следующий год живет в Италии. В 1682 году, вернувшись на родину, молодой ученый женится на Мэри Тук.

В 1685 году Эдмунд Галлей становится редактором «Новостей философии». Через год он публикует разъяснение о причинах возникновения пассатов и муссонов с картой мира, на которой изображает преобладающие ветра. Она стала предшественником современных метеорологических карт.

Комета Галлея на гобелене Байе 1066 год

Эдмунд организовывает в Лондоне собственную обсерваторию. В 1695 году он создает метод расчета орбита комет и открывает периодичность их появления. На основании исследований он предсказывает, что одна из них вернется в 1758 году. Наблюдения немецкого естествоиспытателя Иоганна Георга Палича подтвердили это утверждение, а комета была названа именем Галлея.

В 1715 году ученый делает смелый вывод, что туманности – это космические самосветящиеся объекты. А в 1718 отрывает собственное движение звезд. Для этого он сравнил современные каталоги звездного неба с античными.

Другая научная деятельность

Исследуя силу, которая управляет движением планет, Галлей установил, что она обратно пропорциональна квадрату расстояния до планет.

Галлей уговаривает Ньютона. Художник Pat Nicolle

Однако не смог определить, какими должны быть формы орбит. Узнав, что задачу еще 20 лет назад решил Исаак Ньютон, Эдмунд убедил его продолжить исследования и спонсировал публикацию «Математических начал натуральной философии» в 1687 году.

В 1696 году ученый становится инспектором в Честере. По распоряжению короля Вильгема III отправляется в 5-летнее путешествие, чтобы провести измерения долготы и исследовать магнитные отклонения.

В 1704 году Галлей занимает должность профессора геометрии в Оксфорде. А после смерти Флемстида, в 1719 году, становится Королевским астрономом и директором Гринвичской обсерватории, которую заново оборудует.

Помимо астрономических достижений, Эдмунд Галлей внес вклад в развитие демографической науки. В 1693 году он составил первую таблицу смертности для города Вроцлав, ввел понятие средней продолжительности жизни, рассчитал тарифы страхования жизни. На эти формулы опираются до сих пор.

Умер Эдмунд Галлей 25 января 1742 года. Помимо кометы, его имя носят кратеры на Марсе и Луне.

Столкновение с Землей

Но следует ли считать этот страх перед кометой предрассудком, или же комета в состоянии устроить Армагеддон на Земле?

Давайте пофантазируем. Орбита кометы изменилась и она летит прямо к Земле. Сначала ударит ослепительный жар, летящий со скоростью света, инфракрасное излучение, а затем и тепловое излучение. А через несколько секунд последует ударная волна. Возможно, потом будет цунами.

Следует помнить, что комета Галлея длиной 30 километров, но объект, уничтоживший динозавров 65 миллионов лет назад, был всего девять километров. Если эта комета столкнется с Землей, она уничтожит всю планету. Уже сегодня у нас есть средства следить и снимать комету Галлея на всем ее пути. Можно послать корабль и «оттащить» ее немного, утянуть в сторону, чтобы она не столкнулась с Землей…

Но самые опасные кометы те, которых мы раньше не видели. Когда комета приближается впервые на памяти людей, то с современной технологией мы бессильны. Не зная орбиты, мы не сможем послать корабль, если к Земле впервые полетит большая комета, то нам придется попрощаться с этим жестоким миром. Это будет плохое  знамение и оно, к сожалению, сбудется…


С этим читают