Электроэнергия

Преимущества беспроводной передачи

В чем заключаются преимущества? Плюсы:


  • сокращаются расходы, связанные с поддержанием прямых соединителей (например, в традиционном промышленном скользком кольце);
  • большее удобство для зарядки обычных электронных устройств;
  • безопасная передача в приложения, которые должны оставаться герметически закрытыми;
  • электроника может быть полностью скрыта, что снижает риск коррозии из-за таких элементов как кислород и вода;
  • надежная и последовательная подача питания на вращающееся, высокомобильное промышленное оборудование;
  • обеспечивает надежную передачу мощности в критически важные системы во влажной, грязной и движущейся среде.

Независимо от приложения, ликвидация физического соединения обеспечивает ряд преимуществ по сравнению с традиционными разъемами питания кабеля.

Смотреть галерею

Основное назначение приборов учёта электроэнергии с дистанционным снятием показаний

Дистанционная передача данных производится через интернет, поэтому в основе устройства прибора лежит программное обеспечение. Именно оно позволяет в автоматическом режиме через определённый промежуток времени считывать информацию с устройства и отправлять её на общий сервер энергосбытовой организации.

Получается так, что программа обеспечивает сбор информации по потреблению электричества, её обработку и отправку. Но кроме этого, у энергоснабжающих организаций появляется ряд удобных для них функций, которыми они пользуются. А именно:

  • контроль учёта потребления электроэнергии по многотарифному графику;
  • возможность подключать или отключать потребителя дистанционно;
  • работать с каждым потребителем электроэнергии индивидуально с учётом требований и правил подписанного договора;
  • пересылать информацию по изменениям или уведомления;
  • анализировать полученную информацию и на её основе составлять планы потребления электричества по регионам и районам.

Система SWER

В простейшем варианте однопроводные линии электропередач работают на тех же принципах, что и двухпроводные, но в качестве одного из проводов используется земля. Называется такая система SWER (Single Wire Earth Return — однопроводная с землей в качестве обратного провода).

Схема передачи электроэнергии по системе SWER показана на рис. 2. Используется заземление с сопротивлением 5-10 Ом. Поскольку сопротивление нашей планеты составляет менее 1 Ом, характеристики системы будут определяться главным образом сопротивлением заземления. Сила тока в заземлении не должна превышать 8 А, что ограничивает передаваемую мощность. Напряжение между проводом или землей составляет 12,7 или 19,1 кВ. Провод, по которому осуществляется передача энергии — стальной оцинкованный диаметром 3,26 мм, в последнее время вместо оцинкованных используют стальные провода, покрытые тонким слоем алюминия.

Основной проблемой для системы SWER является обеспечение безопасности. Система рассчитывается таким образом, чтобы шаговое напряжение в почве не превышало 20 В/м. То есть шаговое напряжение не опасно для человека. Хотя некоторые экологи считают, что протекание электрического тока через землю негативно сказывается на природе. К тому же, SWER нельзя использовать в крупных агломерациях, так как там она будет вызывать электрическую коррозию объектов городской инфраструктуры вблизи питающих подстанций. Поэтому SWER используется только для электрификации удаленных населенных пунктов.

В случае, если провод упал на землю или на дерево, но при этом сила тока оказалась в допустимых пределах, соответствующих нормальной нагрузке, это обстоятельство не может быть сразу определено на передающей стороне без получения информации, что к потребителю энергия не поступает. Соответственно, нет возможности сразу отключить подачу электроэнергии в подобных аварийных ситуациях. Это уже приводило к возникновению лесных пожаров.

Впервые система SWER была использована еще в 1925 году при строительстве ЛЭП в Новой Зеландии. С тех пор SWER получила большое распространение в этой стране, а также в соседней Австралии. Причина того, что именно в этих странах SWER завоевала популярность, связана с низкой плотностью населения там. В Австралии есть дополнительное преимущество для данной системы — значительная часть территории страны покрыта пустынями, где система SWER не создает практически никаких проблем. По данным на 2008 г., в Австралии эксплуатировалось более 150 тыс. км. линий SWER.

Помимо Австралии и Новой Зеландии, система SWER использовалась в Бразилии, Канаде, а также в ряде африканских стран. Существует опытная ЛЭП и в США на Аляске. Также системы, аналогичные SWER, используются на некоторых подводных ЛЭП, обратным проводом в них является морская вода. Как правило, подводные однопроводные системы работают на постоянном токе.

Следует отметить, что в большинстве стран мира национальные нормы требуют использования металлического обратного провода, но в ряде случаев эксплуатация систем SWER, тем не менее, допускается на основе разрешения, выданного в индивидуальном порядке. В СССР и в современной России SWER и аналогичные ей системы никогда не использовались, даже не рассматривалась официально возможность строительства таких ЛЭП. Для нашей страны с большими лесными массивами и множеством факторов, способствующим обрыву проводов ЛЭП, имеющиеся в системе SWER проблемы с безопасностью оказываются совершенно неприемлемыми.

За рубежом интерес к развитию системы SWER к середине 80-х годов постепенно угас, но в конце 2000-х годов возродился вновь. В условиях глобального экономического кризиса инвесторы обратили свои взоры на Африку, так как экономики многих стран этого континента демонстрируют впечатляющий рост. Но именно там существуют проблемы с энергоснабжением. Система SWER способна решить их с небольшими затратами, при этом условия на континенте (малая плотность населения, значительную часть площади занимают пустыни) оптимальны для данной системы.

Трансформатор. Передача Электроэнергии

Трансформатор — это устройство для повышения или понижения переменного напряжения. Простейший трансформатор состоит из двух обмоток, одна из которых называется первичной, а другая — вторичной. Обмотки трансформатора расположены на общем сердечнике из электротехнической стали; обычно он изготовляется наборным из листов для уменьшения потерь на вихревые токи.

Принцип действия трансформатора основан на явлении электромагнитной индукции. Когда на первичную обмотку подается переменное напряжение, возникающий в результате этого переменный магнитный поток возбуждает во вторичной обмотке (катушке) переменное напряжение той же частоты. Однако напряжение на обмотках будет различным в зависимости от числа витков в каждой из них.

Согласно закону Фарадея, ЭДС индукции на вторичной обмотке равна

1;

11

Разделив эти выражения одно на другое, получим:

Это уравнение трансформатора, показывающее, как напряжение на вторичной обмотке связано с напряжением на первичной обмотке. Если n2>n1; то трансформатор повышающий, если n2 < nl, то — понижающий.

Из закона сохранения энергии следует, что выходная мощность трансформатора не может превышать его входную мощность.

Грамотно сконструированный трансформатор может иметь КПД порядка 99%; столь низки потери энергии в нем. Таким образом, выходная мощность трансформатора практически равна входной, и, поскольку мощность равна р = IU, имеем:

Трансформатор может работать только на переменном токе.

Трансформаторы играют важную роль в передаче энергии на расстояние. Электростанции часто располагаются далеко от промышленных городов, гидроэлектростанции строятся на больших реках, для атомных электростанций требуется большое количество охлаждающей воды, тепловые электростанции тоже часто строят вдали от городов, чтобы уменьшить загрязнение воздуха.

В любом случае электроэнергию часто приходится передавать на большие расстояния, и в линиях электропередачи всегда неизбежны потери энергии.

Потери энергии можно уменьшить, если использовать в линиях электропередачи высокое напряжение.

Чем выше напряжение, тем меньше сила тока, и тем меньшая доля мощности теряется в линии электропередачи.

Рассмотрим следующую задачу: поселок потребляет электрическую мощность в среднем 120 кВт от электростанции, расположенной в 10 км. Полное сопротивление линии электропередачи равно 0,40 Ом. Следует определить потери мощности при напряжении на линии: а) 240 В; б) 24 000 В.

Решение

а) Если передать мощность 120 кВт при напряжении 240 В, то сила тока в линии составит

Потери мощности в линии достигнут

Свыше 80% общей мощности будет теряться в линии выделяться в виде тепла. то] б) При U = 24 000 В,

Потери мощности составят:

Меньше 1% общей мощности будет теряться в линии, если энергию передавать высоким напряжением.

Как получают электроэнергию

Производство электроэнергии осуществляется из других ее видов при помощи специальных устройств. Например, из кинетической. Для этого применяют генератор – прибор, преобразующий механическую работу в электрическую энергию.

Другие существующие способы ее получения — это, например, преобразование излучения светового диапазона фотоэлементами или солнечной батареей. Или производство электроэнергии путем химической реакции. Или использование потенциала радиоактивного распада либо теплоносителя.

Вырабатывают ее на электростанциях, которые бывают гидравлическими, атомными, тепловыми, солнечными, ветряными, геотермальными и проч. В основном все они работают по одной схеме — благодаря энергии первичного носителя определенным устройством вырабатывается механическая (энергия вращения), передаваемая затем в специальный генератор, где и вырабатывается электроток.

История развития

Передача электроэнергии на расстояние без проводов рука об руку развивается с прогрессом в области радиопередачи, потому что принцип действия в этих явлениях во многом схож, если не сказать одинаков. Большая часть изобретений основывается на методе электромагнитной индукции, а также электростатического поля.

В 1820 году А.М. Ампер открыл закон взаимодействия токов, который заключался, в том, что если по двум близко расположенным проводникам ток течет в одном направлении, то они притягиваются друг к другу, а если в разных, то отталкиваются.

М. Фарадей в 1831 году установил в процессе проведения экспериментов, что переменное (меняющееся по величине и направлении во времени) магнитное поле, порождаемое протеканием электрического тока, наводит (индуцирует) токи в близлежащих проводниках. Т.е. происходит передача электроэнергии без проводов. Подробно закон Фарадея мы рассматривали в статье ранее.

Ну а Дж. К. Максвелл еще через 33 года, в 1864 году перевел экспериментальные данные Фарадея в математический вид, собственно уравнения Максвелла являются основополагающими в электродинамике. Они описывают, как связаны электрический ток и электромагнитное поле.

Существование электромагнитных волн подтвердил в 1888 Г. Герц, в ходе своих экспериментов с искровым передатчиком с прерывателем на катушке Румкорфа. Таким образом производились ЭМ волны с частотой до пол гигагерца. Стоит отметить, что эти волны могли быть приняты несколькими приемниками, но те должны быть настроены в резонанс с передатчиком. Радиус действия установки был в районе 3-х метров. Когда в передатчике возникала искра, такие же возникали и на приемниках. Фактически это и есть первые опыты по передачи электроэнергии без проводов.

Глубокие исследования вел известный ученый Никола Тесла. Он в 1891 году изучал переменный ток высокого напряжения и частоты. В результате чего были сделаны выводы:


Для каждой конкретной цели нужно настраивать установку на соответствующую частоту и напряжение. При этом высокая частота не является обязательным условием. Лучшие результаты удалось добиться при частоте 15-20 кГц и напряжении передатчика 20кВ. Чтобы получить ток высокой частоты и напряжения использовался колебательный разряд конденсатора. Таким образом, можно передавать как электроэнергию, так и производить свет.

Ученный на своих выступлениях и лекциях демонстрировал свечение ламп (вакуумных трубок) под воздействием высокочастотного электростатического поля. Собственно основными заключениями Теслы было то, что даже в случае использования резонансных систем много энергии с помощью электромагнитной волны передать не получится.

Параллельно целый ряд ученных до 1897 года занимались подобными исследованиями: Джагдиш Боше в Индии, Александр Попов в России и Гульельмо Маркони в Италии.

Каждый из них внес свой вклад в развитие беспроводной передачи электроэнергии:

  1. Дж. Боше в 1894 году, зажигал порох, передав электроэнергию на расстояние без проводов. Это он сделал на демонстрации в Калькутте.
  2. А. Попов в 25 апреля (7 мая) 1895 года с помощью азбуки Морзе передал первое сообщение. В России до сих пор этот день, 7 мая, является Днём Радио.
  3. В 1896 году Г. Маркони в Великобритании также передал радиосигнал (азбука Морзе) на расстояние в 1,5 км, позже на 3 км на Солсберийской равнине.

Стоит отметить, что работы Тесла, недооценённые в свое время и потерянные на века, превосходили по параметрам и возможностям работы его современников. В тоже время, а именно в 1896 году его аппараты передавали сигнал на большие расстояния (48 км), к сожалению это было небольшим количеством электроэнергии.

И к 1899 году Тесла приходит к выводу:

Несостоятельность метода индукции представляется огромной по сравнению с методом возбуждения заряда земли и воздуха.

Эти выводу приведут к другим исследованиям, в 1900 году ему удалось запитать лампу от катушки, вынесенной в поле, а в 1903 году была запущена башня Вондерклифф на Лонг-Айленде. Она состояла из трансформатора с заземленной вторичной обмоткой, а на её вершине стоял медный сферический купол. С её помощью получилось зажечь 200 50-ватных ламп. При этом передатчик находился за 40 км от неё. К сожалению, эти исследования были прерваны, финансирование было прекращено, а бесплатная передача электроэнергии без проводов была экономически не выгодной бизнесменам. Башню разрушили в 1917 году.

Параметры

Главными конструктивными параметрами воздушной линии является длина пролета со стрелой проводного провеса, расстоянием от проводника до поверхности земли, покрытием пересекаемых дорожных линий и другим инженерным сооружением.

Длина в промежуточном пролете — промежуток вдоль токовой линии, образующийся между несколькими смежными опорами. Длина пролета зависит от того, какой тип опор с маркой, проводным сечением и климатическим районным условием используется.

Стрела проводного провеса — промежуток по вертикальной линии между линией, который соединяет крепежные проводные точки на несколько опор смежного типа и низшую провесную точку в пролете. Провес зависит от длины пролета.

Габарит воздушной линии электропередач — наименьший промежуток расстояния по вертикали от проводника до земли, озера, связи, шоссейной или железной дороги. Его регламентируют правила установки электропередач. Он зависит от того, какое имеется напряжение в сети.

Обратите внимание! Чтобы обеспечить нормальную работу и безопасное обслуживание воздушной линии, нужно при установке соответствовать установленным нормам. Так проводное расстояние должно быть не меньше шести метров в поселке до земли по вертикали

Расстояние от верха до низа может быть меньше на 3,5 метров или же на 1 метр. Промежуток по горизонтали от проводника до балкона, террасы, здания и глухих окон не меньше метра. Стоит указать, что электропередачи не проводятся над сооружениями.

Через кассу поставщика услуг

Возможна передача показаний электросчетчика непосредственно через кассу поставщика услуг. Для этого можно прийти в рабочее время и через специального сотрудника отправить сведения вместе с оплатой счетов.

Устаревшим вариантом является обращение в почтовые отделения, которые по-прежнему популярны у представителей старшего поколения. Работник почтового отделения самостоятельно занесет необходимые сведения, указанные в квитанции для оплаты.

Упрощает процедуру и позволяет избежать больших очередей наличие у абонента пластиковой карточки. Через любой терминал, имеющийся во многих почтовых отделениях, можно одновременно внести показания электросчетчика и оплатить услуги.

Как передать показания счетчика электроэнергии онлайн?

В каждом регионе у компании энергосбыта есть сайт, на котором можно зарегистрироваться, указать свой лицевой счет, передать показания счетчиков за свет и сразу оплатить. Разберем на примере «Мосэнергосбыта».

Как передать показания электросчетчиков?

На главной странице официального сайта Мосэнергосбыта находится раздел «Как передать показания?». Здесь указано, что с 15 по 26 число каждого месяца можно передавать показания счетчиков ЖКХ одним из способов:

  • через личный кабинет клиента, заполнив простую форму для снятия показаний электросчетчиков;
  • по телефону 8-(495)- с 8:30 до 20:00, сообщив показания счетчика в контактный центр Мосэнергосбыта. Здесь есть также горячая линия: -000-55;
  • через портал Госуслуг г. Москвы можно не только передать показания электросчетчиков, но и проверить статус контроля приборов учета, узнать баланс лицевого счета;
  • через клиентские офисы Мосэнергосбыта;
  • с помощью интерактивного голосового меню контактного центра Мосэнергосбыта, позвонив по указанному номеру, прослушав приветствие и вопрос «Что вы хотите узнать?», необходимо произнести ключевые слова «показания» или «передать показания» и далее следовать инструкциям автоматизированной системы;
  • через терминалы оплаты (QIWI, Сбербанка и прочие) или посетив многофункциональный центр (МФЦ).

Электроэнергия: оплата

Оплата электроэнергии проходит аналогично. Самый быстрый способ — через интернет. Найдите на главной странице сайта Мосэнергосбыта раздел «Как оплатить счет?» и перейдите в подраздел «Способы оплаты электроэнергии».

Вариантов оплаты несколько:

  1. Банковской картой

Оплата производится через личный кабинет, по телефону через контактный центр или с помощью услуги «Автоплатеж» (карта привязывается к квитанциям Мосэнергосбыта, списание средств происходит ежемесячно).

  1. Наличными

«Живые» деньги можно внести через терминалы самообслуживания Мосэнергосбыта, в Единых расчетно-кассовых центрах или в офисе компании (понадобится квитанция).

  1. Электронными деньгами

Передача через катушки


Самым легко реализуемым способом передачи электроэнергии является использовать катушку индуктивности. Принцип подключения при этом простой. Ставится несколько катушек рядом друг с другом. На одну подается напряжение, а другая является приемником. При регулировании или изменении силы тока, вторая катушка также автоматическим способом видоизменяется. По закону физику, при этом будет появляться сила, которая будет напрямую зависеть от того, как изменяется поток электрической энергии.

Минусов в подобной передачи энергии много. Они заключаются в маленькой мощности, небольшом расстоянии и малом коэффициенте полезного действия.

Данный способ не позволяет передать большой объем энергии и подключить мощностное электрооборудование. При попытке совершения этого, можно просто поплавить все электрообмотки.

Кроме того, данным методом нельзя передавать энергию на десятки с сотней метров. Он обладает ограниченным действием. Для физического понимания ситуации, нужно взять несколько и прикинуть местоположение и дальности их разводки, чтобы перестало появляться притяжение или отталкивание. Примерно так эффективны катушки.

Обратите внимание! Еще одной проблемой данного метода является низкий коэффициент полезного действия. Подобный способ не дает передачи большой энергии на соответствующее расстояние

Передача энергии через катушки

Как происходит передача и распределение электроэнергии? – Электро Помощь

Производство, передача и распределение электроэнергии.

   Проблема обеспечения энергией уже в самое ближайшее время станет одной из наиболее острых среди глобальных проблем человечества.

Более 60% энергии вырабатывается на тепловых электростанциях (ТЭС) на органическом топливе (уголь, нефтепродукты, газ, торф), примерно 18% – на атомных (АЭС) и гидроэлектростанциях (ГЭС), а остальные 2% – на солнечных, ветровых, геотермальных и прочих электростанциях.

   Производство электрической энергии в России концентрируется преимущественно на крупных электростанциях. Потребители электрической энергии – промышленность, строительство, электрифицированный транспорт, сельское хозяйство, сфера бытового обслуживания расположены в городах и сельской местности.

Центры потребления электроэнергии, как правило, удалены от ее источников зачастую на расстояния в сотни и даже тысячи километров и распределены на значительной территории. В связи с этим возникает задача транспортирования электроэнергии от станций к потребителям.

Эту задачу выполняют электрические сети, состоящие из линий электропередачи (ЛЭП) и подстанций.

   Передача электрической энергии от электростанций до больших городов или промышленных центров на расстояния тысяч километров является сложной научно-технической проблемой.

   Для уменьшения потерь на нагревания проводов необходимо уменьшить силу тока в линии передачи (ЛЭП), и, следовательно, увеличить напряжение.

Обычно линии электропередачи строятся в расчете на напряжение 400–500 кВ, при этом в линиях используется трехфазный ток переменной частоты 50 Гц.

На рисунке представлена схема линии передачи электроэнергии от электростанции до потребителя. Схема дает представление об использовании трансформаторов при передаче электроэнергии.

   Следует отметить, что при повышении напряжения в линиях передачи увеличиваются утечки энергии через воздух. В сырую погоду вблизи проводов линии может возникнуть так называемый коронный разряд, который можно обнаружить по характерному потрескиванию. Коэффициент полезного действия линии передач не превышает 90 %.

Условная схема высоковольтной линии передачи. Трансформаторы изменяют напряжение в нескольких точках линии. На схеме изображен только один из трех проводов высоковольтной линии.

Среди приборов переменного тока, нашедших широкое применение в технике, значительное место занимают трансформаторы.

Трансформатор – прибор для преобразования напряжения и силы переменного тока при неизменной частоте.

Принцип действия трансформаторов, применяемых для повышения или понижения напряжения переменного тока, основан на явлении электромагнитной индукции.

Простейший трансформатор состоит из сердечника замкнутой формы из магнитомягкого материала, на который намотаны две обмотки: первичная и вторичная.


Первичная обмотка подсоединяется к источнику переменного тока с ЭДС e1(t), поэтому в ней возникает ток J1(t), создающий в сердечнике трансформатора переменный магнитный поток Φ, который практически без рассеяния циркулирует по замкнутому магнитному сердечнику и, следовательно, пронизывает все витки первичной и вторичной обмоток.

В режиме холостого хода, то есть при разомкнутой цепи вторичной обмотки, ток в первичной обмотке весьма мал из-за большого индуктивного сопротивления обмотки. В этом режиме трансформатор потребляет небольшую мощность.

В режиме нагрузки в цепь вторичной обмоткивключается сопротивление нагрузки Rн, и в ней возникает переменный ток J2(t). Теперь полный магнитный поток Φ в сердечнике создается обоими токами.

Но согласно правилу Ленца магнитный поток Φ2, создаваемый индуцированным во вторичной обмотке током J2, направлен навстречу потоку Φ1, создаваемому током J1 в первичной обмотке: Φ = Φ1 – Φ2.

Коэффициент k=n1/n2 есть коэффициент трансформации.

При k>1 трансформатор называется повышающим, при k

Передача электроэнергии: популярные способы и альтернативные варианты

Электричество не относится к накопительным ресурсам.

На сегодняшний день нет эффективных технологий, позволяющих аккумулировать энергию, выработанную генераторами, поэтому передача электроэнергии потребителям относится к актуальным задачам.

В стоимость ресурса входят затраты на его производство, потери при транспортировке и расходы на монтаж и обслуживание ЛЭП. При этом от схемы передачи напрямую зависит эффективность системы электроснабжения.

Получение и передача

Для начала стоит затронуть тему получения энергии. За последние 150 лет человечество сделало огромный шаг в разработке способов добычи электричества. Сегодня используются невозобновляемые источники, например, сжигание угля и газа, и возобновляемые — движения воды, ветра.

Лучшие умы планеты работают над совершенствованием возобновляемых технологий добычи, проще говоря экологически чистых источников. Ведь потребление энергии растет с каждым годом и электростанциям приходится сжигать все больше угля и газа, тем самым исчерпывая природные запасы и нанося вред экологии. Другое дело ветряк или ГЭС, для которых ветер и вода никогда не закончатся. Но КПД от них пока крайне мал.

Виды электростанций

Так как в большинстве стран СНГ главным поставщиком электричества в дома являются местные ТЭС (Тепловые электростанции, работающие от угля, нефти или газа), нужно рассмотреть процесс получения именно на их примере.

Схема выработки энергии от сжигания полезных ископаемых на ТЭС

Как видно, процесс происходит следующим образом:

  1. Уголь и воздух подаются в топку.
  2. Жар от топки разогревает воду и превращает ее в пар.
  3. Пар под давлением подается на турбину.
  4. Мощный поток пара заставляет турбину вращаться.
  5. Вместе с турбиной начинает вращаться ротор генератора, который уже преобразует механическое движение в электричество.

Конечный смысл любой ЭС, неважно на каких источниках она работает, заключается во вращении турбины. На тепловых станциях турбину вращает пар, на ГЭС ­вода, в ветряке ветер

Ввиду дороговизны строить в каждом городе по электростанции невозможно. На деле большинство станций обеспечивают электричеством один крупный мегаполис и сотни приближенных сел, деревень и ПГТ.

Прежде чем попасть в населенный пункт, добытая энергия проходит десятки, а то и сотни километров. Тут стоит рассказать о том, каким образом ток вообще путешествует по проводам.

После выхода с генератора станции электрический ток попадает на трансформатор для повышения напряжения до 1150 кВ. Зачем это делается? Чем больше напряжение, тем меньше электричество теряет свою мощность, путешествуя по кабелю

Но, что еще немаловажно — это затраты на передачу электричества. Чем выше напряжение, тем меньшего сечения провода нужны

Чем тоньше кабель, тем меньше в нем проводящего металла. Чем меньше металла, тем он дешевле.

Высоковольтные линии электропередачи

Тем не менее, существует и некоторый эффект рассеивания электричества. Пока ток пройдет сотню километров, он неизбежно потеряет некоторое количество своей мощности. Так же снижение КПД зависит от силы сопротивления металла в кабеле.

Дополнительная информация. Ученые рассматривают вопрос об исключении проводов из цепочки передачи электроэнергии. Для этого планируется использовать всем знакомую технологию Wi-Fi.

Суть явления

В отличие от природных ресурсов вроде газа, электроэнергию невозможно закачивать в хранилища и брать оттуда столько, сколько нужно. Поэтому выработка электроэнергии напрямую зависит от потребления. Когда спрос на электричество больше, электростанция вырабатывает больше электроэнергии.

Таким образом, передачу электрического тока можно охарактеризовать как непрерывный процесс выработки, транспортировки и потребления. На государственном уровне передача электроэнергии относится к вопросам стратегической безопасности и является приоритетной задачей, на инфраструктуру которой ежегодно выделяются огромные суммы бюджетных средств.

Например, в России в 2018 году на благоустройство энергетической инфраструктуры было потрачено 30 миллиардов долларов.

Дополнительная информация. Недавно в Австралии была запущена первая в мире аккумулирующая электроэнергию станция фирмы Тесла. Саму электроэнергию добывают ветряки, которые заряжают гигантский блок батарей. От них энергия уже передается конечному потребителю по проводам. Таким образом, люди не остаются без электричества в безветренный день.


С этим читают