Облучение: как справиться с последствиями для организма?

Что такое радиоактивность?

Радиоактивность – самопроизвольное превращение атомных ядер в ядра других элементов. Сопровождается ионизирующим излучением. Известно четыре типа радиоактивности:


  • альфа-распад – радиоактивное превращение атомного ядра при котором испускается альфа-частица;
  • бета-распад — радиоактивное превращение атомного ядра при котором испускается бета-частицы, т.е электроны или позитроны;
  • спонтанное деление атомных ядер — самопроизвольное деление тяжелых атомных ядер (тория, урана, нептуния, плутония и других изотопов трансурановых элементов). Периоды полураспада у спонтанно делящихся ядер составляют от нескольких секунд до 1020 для Тория-232;
  • протонная радиоактивность — радиоактивное превращение атомного ядра при котором испускаются нуклоны (протоны и нейтроны).

Что такое изотопы?

Изотопы – это разновидности атомов одного и того же химического элемента, обладающие разными массовыми числами, но имеющие одинаковый электрический заряд атомных ядер и потому занимающие в периодической системе элементов Д.И. Менделеева одинаковое место. Например: 55Cs131, 55Cs134m, 55Cs134, 55Cs135, 55Cs136, 55Cs137. Различают изотопы устойчивые (стабильные) и неустойчивые – самопроизвольно распадающиеся путем радиоактивного распада, так называемые радиоактивные изотопы. Известно около 250 стабильных, и около 50 естественных радиоактивных изотопов. Примером устойчивого изотопа может служить Pb206, Pb208 являющийся конечным продуктом распада радиоактивных элементов U235, U238 и Th232.

Доза облучения и воздействие на организм

Значение поглощенной дозы, рад Степень воздействия на человека
10000 рад (100 Гр.) Летальная доза, смерть наступает через несколько часов или дней от повреждения центральной нервной системы.
1000 – 5000 рад (10-50 Гр.) Летальная доза, смерть наступает через одну-две недели от внутренних кровотечений (истончаются клеточные мембраны), в основном в желудочно-кишечном тракте.
300-500 рад (3-5 Гр.) Летальная доза, половина облученных умирают в течение одного-двух месяцев от поражения клеток костного мозга.
150-200 рад (1,5-2 Гр.) Первичная лучевая болезнь (склеротические процесс, изменения в половой системе, катаракта, иммунные болезни, рак). Тяжесть и симптомы зависят от дозы излучения и его типа.
100 рад (1 Гр) Кратковременная стерилизация: потеря способности иметь потомство.
30 рад Облучение при рентгене желудка (местное).
25 рад (0,25 Гр.) Доза оправданного риска в чрезвычайных обстоятельствах.
10 рад (0,1 Гр.) Вероятность мутации увеличивается в 2 раза.
3 рад Облучение при рентгене зубов.
2 рад (0,02 Гр) в год Доза облучения, получаемая персоналом, работающим с источником ионизирующего излучения.
0,2 рад (0,002 Гр. или 200 миллирад) в год Доза облучения, которую получают сотрудники промышленных предприятий, объектов радиационно-ядерных технологий.
0,1 рад (0,001 Гр.) в год Доза облучения, получаемая средним россиянином.
0,1-0,2 рад в год Естественный радиационный фон Земли.
84 микрорад/час Полёт на самолёте на высоте 8 км.
1 микрорад Просмотр одного хоккейного матча по телевизору.

Вред радиоактивных элементов и воздействие радиации на человеческий организм активно изучается учёными всего мира. Доказано, что в ежедневных выбросах из АЭС содержится радионуклид «Цезий-137», который при попадании в организм человека вызывает саркому (разновидность рака), «Стронций-90» замещает кальций в костях и грудном молоке, что приводит к лейкемии (раку крови), раку кости и груди. А даже малые дозы облучения «Криптоном-85» значительно повышают вероятность развития рака кожи.

Защита от радиации

Лучший способ защититься от пагубного влияния радиации – быть как можно дальше от источника излучения, там, где благоприятный радиационный фон (до 50 микрорентген в час). Но предугадать все возможные ситуации нельзя, поэтому каждый из нас должен знать, как защититься от ионизирующего излучения.

Индивидуальным средством защиты является одежда – резиновая, просвинцованная, а также противогазы и респираторы. Такими элементами должны быть обеспечены все, кто имеет потенциальный риск облучиться (работники некоторых заводов, врачи-рентгенологи и т.д.).

Существуют радиопротекторные препараты, которые нейтрализуют воздействие невысоких доз радиации (Мексамин, Индралин, Цистамин и др.). Их назначают людям, работающим в зонах с неблагоприятным радиационным фоном. Схему применения определяет врач. В случае глобальной катастрофы (взрыв бомбы или реактора) людям вблизи может помочь только противорадиационный бункер. Но таких убежищ совсем немного, да и вряд-ли туда можно успеть добраться. Но, на всякий случай, разузнайте, где поблизости такие есть.

Существует ошибочное убеждение, что применение препаратов йода помогает справиться с воздействием радиации. Это не совсем так. Употребление йода целесообразно до воздействия радиации. Это делается для того, чтобы насытить щитовидную железу этим элементом и не дать ей поглотить радиоактивный йод, которой часто используют в реакторах. А употребление йода после облучения может только ухудшить ситуацию. Поэтому принимать большие дозы йода стоит только по экстренным рекомендациям МЧС.

Где можно получить высокую дозу облучения?

В природе не существует мест, где за короткое время можно получить большую дозу радиации. Исключения составляют провинции, где население получает среднегодовые дозы, превышающие установленный предел в 5-10 раз.

Например, в индийском штате Керала доза составляет 5 мЗв, в бразильском городе Гуарапари – 5,5 мЗв. Но проживающие в этих районах люди приспособились в повышенной дозе радиации, среди них не наблюдается повышенной смертности или частоты заболевания онкологическими патологиями.

Для остальных граждан главные источники потенциальной опасности получения облучения в высоких (свыше 1000 мЗв) дозах – техногенные: аварии и взрывы на АЭС, атомные испытании, приборы и устройства, которые содержат радиоактивные вещества.

Источники радиоактивного излучения


Каковы же источники радиации? Они подразделяются на естественные и искусственные.

Естественные источники радиации

солнечная радиация

К естественным источникам радиации относятся:

  • почва, вода и атмосфера;
  • космические объекты и, конечно, Солнце;
  • энергия, выделяемая при распаде некоторых химических элементов, заботливо хранимых Природой в земной коре;
  • человек содержит некоторые радиоактивные элементы (рубидий-87 и калий-40), поэтому сам по себе является источником персонального радиационного фона.

Вся история формирования биосферы Земли происходит на фоне естественного радиоактивного излучения. До определённых значений он не является чем-то противоестественным для человека.

Природа, к сожалению, не наделила людей органами чувств, способных реагировать на облучение. Однако существуют физические величины и единицы их измерения, характеризующие как само излучение, так и степень его воздействия на человека.

В чём же измеряется радиация? В качестве единицы измерения дозы ионизирующего излучения за определённый промежуток времени используют 1 рентген. Это чрезвычайно большая доза облучения, поэтому на практике применяют его миллионную часть, называемую микрорентгеном (мкР). Естественный радиационный фон в норме составляет 10–15 микрорентген в час.

Искусственные источники радиации

атомная электростанция

Искусственные источники радиации возникли в результате техногенной деятельности человечества:

  • атомные электростанции;
  • места добычи полезных ископаемых, содержащих радиоактивные компоненты;
  • полигоны ядерных испытаний;
  • захоронения ядерных отходов;
  • военная техника с ядерными боеголовками;
  • медицинская аппаратура, использующая радиоактивные изотопы.

Применение радиации в медицине

Глубокое изучение свойств радиоактивного излучения, позволило найти активное применение радиации в медицине. Здесь можно выделить три направления.


  1. Рентгеновская диагностика.

  2. Введение в организм человека радиоактивных изотопов.
  3. Лучевая терапия.

В рентгеновской диагностике используется различная проникающая способность рентгеновских лучей при прохождении через мягкие ткани и кости. Результат такого обследования фиксируется на фотоплёнке или экране монитора.

Введение в организм человека небольшого количества радиоактивных изотопов, позволяет по излучению фиксировать их локализацию и концентрацию в определённом органе. Такая диагностика чрезвычайно важна для выявления ряда патологий.

Для лечения онкологических заболеваний применяют лучевую терапию. Метод основан на том, что излучение, создаваемое рентгеновской или гамма-установкой, остро направлено воздействует на очаг онкологии и подавляет способность злокачественных клеток к росту и размножению.

Перечисленные методы диагностики и терапии вносят дополнительную лепту в получаемую человеком дозу радиации.

Генетические последствия радиационного облучения

Эта тема достаточно трудна для изучения, поэтому окончательные выводы о биологическом воздействии радиации пока не сделаны. Но некоторые заключения все же имеют под собой серьезную исследовательскую почву. Например, достоверно известно, что ионизирующее излучение в гораздо большей степени поражает мужские половые клетки, чем женские. Так, полученная при низком уровне радиации доза облучения в 1 Гр вызывает:

  • до 2000 случаев генетических мутаций и до 10000 случаев хромосомных нарушений на каждый миллион младенцев, родившихся у облученных мужчин.
  • до 900 мутаций и 300 хромосомных патологий у потомства облученных женщин.

При получении этих данных учитывались только тяжелые генетические последствия облучения. Ученые полагают, что число менее серьезных дефектов намного больше, а ущерб от них зачастую еще выше.

Неопухолевые последствия воздействия на организм радиации

Отсроченный эффект того, что радиация делает с человеком, часто выражается в функциональных и органических изменениях. К ним относятся:

  • Нарушения микроциркуляции из-за повреждения мелких сосудов, вследствие чего развивается тканевая гипоксия, страдают печень, почки, селезенка.
  • Патологические изменения, созданные дефицитом клеток в органах с низкой скоростью разрастания тканей (половые железы, соединительная ткань).
  • Расстройство регулирующих систем: ЦНС, эндокринной, сердечнососудистой.
  • Избыточное новообразование тканей эндокринных органов в результате снижения их функций, вызванного радиацией.

Канцерогенные последствия радиоактивного облучения

Раньше других проявляют себя такие болезни, вызываемые радиацией, как лейкозы. Они становятся виновниками летальных исходов уже через 10 лет после обучения. Среди людей, подвергшихся действию проникающей радиации после бомбардировок Хиросимы и Нагасаки, смертность от лейкозов пошла на убыль только после 1970 года. Согласно данным НКДАР ООН (Научного комитета по действию атомной радиации), вероятность заболевания лейкозом составляет 1 шанс из 500 при получении дозы облучения 1 Гр.


Еще чаще развивается рак щитовидной железы – по информации того же НКДАР он поражает 10 человек из каждой тысячи облученных (в расчете на индивидуальную поглощенную дозу 1 Гр). С такой же частотой развивается и рак груди у женщин. Правда, оба этих заболевания, несмотря на злокачественность, приводят к смерти далеко не всегда: выжить удается 9 из 10 человек, перенесших рак щитовидной железы, и каждой второй заболевшей раком молочной железы женщине.

Одно из самых грозных отдаленных последствий, которое проникающая радиация может вызвать у людей, – это рак легких. Согласно исследованиям, наиболее высока вероятность заболеть им у шахтеров урановых родников – в 4-7 раз выше, чем у тех, кто пережил атомную бомбардировку. По мнению специалистов НКДАР, одна из причин этого – возраст шахтеров, которые в подавляющем большинстве старше облученного населения японских городов.

В других тканях организма, подвергшегося радиоактивной атаке, опухоли развиваются гораздо реже. Рак желудка или печени встречается не чаще 1 случая на 1000 при получении индивидуальной дозы в 1 Гр, рак иных органов фиксируется с частотностью 0,2-0,5 случая на 1000.

Каким дозиметром лучше пользоваться для проверки радиационной безопасности камня?

Разумнее всего пользоваться дозиметром еще на этапе покупки, чтобы не приносить в дом опасные для здоровья поделочное сырье или украшения. Оптимальный прибор для этих целей –  миниатюрный дозиметр радиации RADEX ONE. Установленный в нем датчик СБМ-20 фиксирует бета- и гамма-излучение c учётом рентгеновского излучения. Прибор сопоставим размерами и весом с обычным маркером-выделителем, поэтому поместится даже в карман.

Еще лучше взять для проверки дозиметр RADEX RD1008, который чувствует еще и альфа-излучение. Его габариты больше, но он поможет выявить камни, облученные не только в рентгеновских установках, но и в атомном реакторе. Эти же дозиметры подойдут для измерения уровня радиоактивности приобретенных ранее камней.

С дозиметрами радиации RADEX вы обезопасите себя от покупки вредоносных украшений и интерьерных предметов и проверите уже приобретенные. Эти приборы помогут вам контролировать экологию собственного дома и радиационную чистоту вещей, с которыми соприкасаетесь.

Эффективная доза

Основная статья: Эффективная доза

Эффективная доза (E) — величина, используемая как мера риска возникновения отдалённых последствий облучения всего тела человека и отдельных его органов и тканей с учётом их радиочувствительности. Она представляет сумму произведений эквивалентной дозы в органах и тканях на соответствующие взвешивающие коэффициенты.

Одни органы и ткани человека более чувствительны к действию радиации, чем другие: например, при одинаковой эквивалентной дозе возникновение рака в лёгких более вероятно, чем в щитовидной железе, а облучение половых желез особенно опасно из-за риска генетических повреждений. Поэтому дозы облучения разных органов и тканей следует учитывать с разным коэффициентом, который называется взвешивающим коэффициентом ткани. Умножив значение эквивалентной дозы на соответствующий взвешивающий коэффициент и просуммировав по всем тканям и органам, получим эффективную дозу, отражающую суммарный эффект для организма. Взвешивающие коэффициенты устанавливают эмпирически и рассчитывают таким образом, чтобы их сумма для всего организма составляла единицу.

Единицы измерения эффективной дозы совпадают с единицами измерения эквивалентной дозы. Она также измеряется в зивертах или бэрах.

Ожидаемая эффективная доза E(τ) — доза внутреннего облучения от поступивших в организм человека радионуклидов. Время облучения человека такими радионуклидами определяется периодами их полураспада и биологического удержания в организме и может составлять многие месяцы и даже годы. Для целей регулирования полный период накопления дозы устанавливается равным 50 лет для взрослого человека или, если оценивается доза для детей, до достижения 70 лет. При оценке годовой дозы ожидаемая эффективная доза суммируется с эффективной дозой от внешнего облучения за этот же период.

Эффективная и эквивалентная дозы — это нормируемые величины, то есть, величины, являющиеся мерой ущерба (вреда) от воздействия ионизирующего излучения на человека. К сожалению, они не могут быть непосредственно измерены. Поэтому в практику введены операционные дозиметрические величины, однозначно определяемые через физические характеристики поля излучения в точке, максимально возможно приближенные к нормируемым. Основной операционной величиной является амбиентный эквивалент дозы (синонимы — эквивалент амбиентной дозы, амбиентная доза).

Амбиентный эквивалент дозы Н*(d) — эквивалент дозы, который был создан в шаровом фантоме МКРЕ (международной комиссии по радиационным единицам) на глубине d (мм) от поверхности по диаметру, параллельному направлению излучения, в поле излучения, идентичном рассматриваемому по составу, флюенсу и энергетическому распределению, но мононаправленном и однородном, то есть амбиентный эквивалент дозы Н*(d) — это доза, которую получил бы человек, если бы он находился на месте, где проводится измерение. Единица амбиентного эквивалента дозы — зиверт (Зв).

Чем измеряется облучение[править]

Наиболее известный прибор — дозиметр; он предназначен для измерения полученной человеком эквивалентной дозы, и проградуирован в зивертах или бэрах (устаревшие модели могут быть проградуированы в рентгенах). Дозиметров существует много и разных, в нашей стране широко известны маленькие дозиметры в виде ручки.

Более сложный прибор — дозиметр-радиометр, у него есть и ещё один режим — замерять активность образца в распадах в минуту или секунду.

Счётчик Гейгера — простой и давно известный детектор радиации, один щелчок которого — это пролёт через камеру счётчика одной частицы. Когда он делает вот так: тик-так! тик-так! — это значит, что пора уносить ноги и глотать антирадин на всякий случай. В случае превышения некоторого значения интенсивности зашкаливает, и в этом случае чиселке, которую он показывает, уже нельзя верить. Некоторые современные дозиметры представляют собой улучшенные счётчики Гейгера с прикрученной к ним электроникой для перевода попугаев в зиверты.

Плёночный значок — по принципу действия похож на старинную фотопластинку, но покрыт менее чувствительными солями, которым пофиг на свет. А на радиацию не пофиг, от неё они чернеют. Если значок из белого стал чёрным, значит, носитель значка схватил опасную дозу и ему пора лечиться.

Газоразрядные счетчики

Радиацию можно обнаружить и измерить с помощью различных датчиков. Самые простые из них — ионизационные камеры, пропорциональные счетчики и газоразрядные счетчики Гейгера-Мюллера. Они представляют собой тонкостенную металлическую трубку с газом (или воздухом), вдоль оси которой натянута проволочка — электрод. Между корпусом и проволочкой прикладывают напряжение и измеряют протекающий ток. Принципиальное отличие между датчиками лишь в величине прикладываемого напряжения: при небольших напряжениях имеем ионизационную камеру, при больших — газоразрядный счетчик, где-то посередине — пропорциональный счетчик.

Сфера из плутония-238 светится в темноте, подобно одноваттной лампочке. Плутоний токсичен, радиоактивен и невероятно тяжел: один килограмм этого вещества умещается в кубике со стороной 4 см.

Ионизационные камеры и пропорциональные счетчики позволяют определить энергию, которую передала газу каждая частица. Счетчик Гейгера-Мюллера только считает частицы, зато показания с него очень легко получать и обрабатывать: мощность каждого импульса достаточна, чтобы напрямую вывести ее на небольшой динамик! Важная проблема газоразрядных счетчиков — зависимость скорости счета от энергии излучения при одинаковом уровне радиации. Для ее выравнивания используют специальные фильтры, поглощающие часть мягкого гамма- и всё бета-излучение. Для измерения плотности потока бета- и альфа-частиц такие фильтры делают съемными. Кроме того, для повышения чувствительности к бета- и альфа-излучению применяются «торцевые счетчики»: это диск с донышком в качестве одного электрода и вторым спиральным проволочным электродом. Крышку торцевых счетчиков делают из очень тонкой (10−20 мкм) пластинки слюды, через которую легко проходит мягкое бета-излучение и даже альфа-частицы.


С этим читают