Ракета-носитель

Конфигурации твердотопливных ракет

В описаниях твердотопливных ракет можно часто встретить следующее:


«Топливо для ракет состоит из перхлората аммония (окислитель, по весу – 69,6%), полимера (связующая смесь – 12,04%), алюминия (16%), оксида железа (катализатор – 0,4%) и эпоксидный отверждащий агент (1,96%). Перфорация сделана в форме 11-конечной звезды, находящейся в переднем сегменте двигателя и в форме дважды усеченного конуса в каждом из остальных сегментов, в т.ч. и конечном. Благодаря такой конфигурации при розжиге обеспечивается высокая тяга, а затем, через 50 с после старта, она уменьшается приблизительно на треть, предотвращая перенапряжение аппарата в период максимального динамического давления.

В этом плане объясняется не просто состав топлива, но и форма канала, который был пробуренный в центре топлива. Как выглядит перфорация в виде 11-конечной звезды, можете увидеть на фото:

Весь смысл в том, чтобы увеличить площадь поверхности канала, и соответственно, увеличить площадь выгорания, в результате чего увеличиться тяга. По мере сгорания топлива, форма меняется к кругу. Такая форма в случае с космическим шаттлом дает серьезную изначальную тягу, которая в средине полета становится немного послабее.

Твердотопливные двигатели имеют 3 важные преимущества:

  • низкая стоимость;
  • простота;
  • безопасность.

Хотя есть и 2 недостатка:

двигатель нельзя отключать или запускать повторно после зажигания;

невозможность контроля тяги.

Недостатки означают, что тип твердотопливных ракет подходит только для непродолжительных задач или систем ускорения. Если вам нужно управлять двигателем, то придется прибегнуть к системе жидкого топлива.

В геральдике

Герб Байконура

В классической геральдике гербовая фигура ракеты, как явление нового времени, разумеется отсутствует. На эмблемах советского времени ракету и ракетные технологии изображали как тогда было принято прямолинейно. Самым ярким примером этому может послужить герб города Байконур.

Со временем для изображения ракеты на гербах муниципальных образований и на эмблемах структур и организаций стали использовать стрелу, а позже — наконечник стрелы, отделив военные и наземные ракетные технологии от космических.

Наконечник стрелы как символ ракетно-космических технологий также широко используется в мировой эмблематике.

Жидкотопливные ракеты


Роберт Годдард в 1925 году испытал первый двигатель, работающий на жидком топливе. Его двигатель использовал для работы жидкий кислород и бензин. Также он стремился решить многие фундаментальные проблемы в конструкции двигателя ракеты, включая стратегии охлаждения, механизмы накачки и рулевые механизмы. Такие проблемы делают ракеты с жидким топливом столь сложными. Все это ему успешно удалось.

Главная идея максимально проста. В большинстве жидкотопливных ракетных двигателях окислитель и топливо (к примеру, жидкий кислород и бензин закачиваются в камеру сгорания). Там они сгорают, создавая поток горячих газов с высоким давлением и скоростью. Эти газы проходят через специальное сопло, которое делают их скорость еще большей (от 8 тыс. до 16 тыс. километров в час), а затем выходят. Ниже приведена простая схема, демонстрирующая этот процесс наглядно.

На схеме видно сложности обычного ракетного двигателя. Например, нормальное топливо – это холодный жидкий газ по типу жидкого кислорода или жидкого водорода. Но одной из серьезных проблем подобного двигателя является охлаждение сопла и камеры сгорания, поэтому сначала холодная жидкость циркулирует вокруг перегретых частей, дабы их охладить. Насосы должны генерировать высокое давление, чтобы преодолеть давление в камере сгорания, сжигаемой топливом. Это охлаждение и подкачка делает ракетный двигатель схожим на неудачную попытку сантехнической самореализации. Теперь рассмотрим все варианты комбинации топлива, которые применяется в жидкотопливных двигателях ракет:

  • жидкий кислород и жидкий водород (главные двигатели космических шаттлов);
  • жидкий кислород и бензин (первые ракеты Годдарда);
  • жидкий кислород и керосин (применялись в программе «Аполлон» в 1 ступени «Сатурна-5»);
  • жидкий кислород и спирт (применялись ракетах V2 немецкого производства);
  • четырехокись азота/монометилгидразин (применялись в двигателях «Кассини»).

Протон-М — это:

  • Основа космической транспортной системы России
  • Отработанная конструкция, за время эксплуатации — более 400 пусков (всех модификаций)
  • Высокий коммерческий потенциал на мировом рынке

Ракета-носитель «Протон-М»

Для ракеты-носителя «Протон-М» разработаны более легкие и объемные головные обтекатели. Это позволяет значительно увеличить объем для размещения полезной нагрузки, а также осуществлять групповые запуски спутников различного типа.

На модернизированном носителе «Протон-М» установлена новая совершенная система управления на основе бортового цифрового вычислительного комплекса (БЦВК). 

Новая система управления «Протона-М» позволяет:

  • улучшить использование бортового запаса топлива за счет его более полной выработки, что повышает энергетические характеристики ракеты-носителя и уменьшает или даже исключает остатки вредных компонентов;
  • обеспечить пространственный маневр на активном участке полета, что расширяет диапазон возможных наклонений опорных орбит;
  • упростить состав бортовых электронных систем в связи с передачей вычислительных операций систем опорожнения баков и безопасности носителя на бортовом цифровом вычислительном комплексе;
  • позволить реализовать в полете ограничения по параметру «произведение скоростного напора на угол тангажа», что дает возможность без существенного изменения прочности конструкции ракеты-носителя установить головные обтекатели больших размеров;
  • обеспечить оперативный ввод или изменение полетного задания;
  • улучшить массовые характеристики ракеты-носителя.

На «Протоне-М» решена задача резкого сокращения размеров полей, отводимых для падения отработавших первых ступеней носителя. Сокращение размеров полей падения осуществляется путем управляемого спуска ускорителя первой ступени на площадку ограниченных размеров.  Уменьшение размеров полей падения позволяет облегчить задачи по поиску и утилизации остатков первой ступени. Кроме того, она падает на землю практически «чистой» — циклограмма работы двигателей первой ступени обеспечивает полную выработку компонентов из ее баков. Таким образом, существенно улучшаются экологические показатели нового российского носителя.

Состав ракеты-носителя «Протон-М» со спутником связи

Тактико-технические характеристики ракеты-носителя

Протон-М

Стартовая масса, т

~705

Количество ступеней

3

Компоненты топлива:

— первой ступени

— второй ступени

— третьей ступени

НДМГ + АТ

НДМГ + АТ

НДМГ + АТ

Двигатели:

— первой ступени

— второй ступени

— третьей ступени

6 х РД-276

3 х РД-0210 и 1 х РД-0211

1 х РД-0213 и 1 х РД-0214

Используемые разгонные блоки

Бриз-М и ДМ-03

Космодром

Масса полезной нагрузки, т.*

— на НОО (200 км, i=51,6 град.)

С разгонным блоком «Бриз-М»

— на ГПО

— на ГСО

22,4

6,3

3,3

* — НОО — низкая опорная орбита; ГПО — геопереходная орбита; ГСО — геостационарная орбита.

Стартовый комплекс ракеты-носителя 

Стартовый комплекс на космодроме Байконур предназначен для подготовки к пускам и проведения пусков ракет-носителей «Протон-М» с различными космическими головными частями. Головным разработчиком СК является филиал ФГУП «ЦЭНКИ» — НИИ СК.

Стартовый комплекс, состоит из двух стартовых площадок, объединенных сетью коммуникаций, и общего для обеих площадок комплекса сооружений, обеспечивающих каждую из них сжатыми газами, водой, электроэнергией, хладагентами для термостатирования компонентов топлива и космических аппаратов.

Построение стартового комплекса обеспечивает достаточную автономность каждой стартовой площадки. Агрегаты и системы стартового комплекса, все технологические процессы подготовки к пуску и пуска ракеты-носителя созданы с учетом максимальной безопасности обслуживающего персонала и требований экологичности при эксплуатации.


Фотогалерея 

Видео

Вывоз ракеты-носителя «Протон-М» с разгонным блоком «Бриз-М» и спутником «Ямал-601» на стартовый комплекс Байконура

Пуск ракеты-носителя «Протон-М» с разгонным блоком «Бриз-М» и спутником «Интелсат-22» 25 марта 2012 года

Гельмут Греттруп (в центре) после удачного запуска

Схема работы с немецкими специалистами достаточно быстро приобрела своеобразный характер. На научно-технических советах немцы делали подробнейший доклад по очередному проекту ракеты. Выступали оппоненты. Доклад всесторонне рассматривался и обсуждался. Признавали его победу. Затем на остров приезжали советские специалисты, уточняли нюансы, забирали документацию, во многих случаях даже не удосуживаясь ее переиздать, ограничиваясь лишь стиранием немецких фамилий. А самое главное — «гостям» не давали ничего испытывать, объясняя это занятостью всех стендов. В итоге, выжав из немецких ракетчиков все, что только можно, создав им и своему руководству невыносимые условия для дальнейшей работы, немцев вернули в ГДР, даже не решив вопрос их трудоустройства. В фильме «Укрощение огня» есть циничная фраза, приписываемая С.Королеву: «Мне у немцев учиться нечему, я у Циолковского учился»… Интриги, бесконечные обращения через головы руководителей привели к прогнозируемому результату — как и в 37-м году, руководство НИИ попало под сталинские репрессии. Расстрелять их не успели — великий вождь скончался. Последовала полная реабилитация, им вернули все награды, но в ракетную технику они больше не попали — «все места уже были заняты». Для компенсации «исхода немцев» в 1954 году были созданы четыре самостоятельных ракетных конструкторских бюро, в том числе и днепропетровское. Позже других, в августе 1956 года, было создано и ОКБ С.Королева. Последним, как и положено руководителю, в конце 1953 г. покинул СССР Г.Греттруп. Черток отмечает, что от стыда он не мог смотреть Гельмуту в глаза. Прямо на перроне вокзала в Берлине агенты американской разведки «упаковали» Г.Греттрупа в свою машину, вывезли в посольство, а оттуда — в Западную Германию. Там ему предложили руководящую работу в Штатах у его друга фон Брауна. Он отказался. Его допрашивали. Правда, допросами это назвать нельзя — его не били, так, длительные беседы со светом в лицо. Сейчас уже известны итоги этих «бесед». Можно только поражаться порядочности Г. Греттрупа после того, что с ним сделали «наши», — он, как мог, «наводил тень на плетень». Американские спецслужбы, обозленные стойкостью «совка», создали вокруг него атмосферу неприязни, не давая нигде устроиться на работу. Год семья бедствовала. Но потом Греттруп все-таки нашел место в одном из подразделений «Сименса», изобрел электронные машинки для счета и размена денег (впервые в мире), сейчас не менее популярные, чем ракеты. Очень скоро под его началом уже работало более четырехсот сотрудников. Но спецслужбы достали его и здесь. В 1967 году, когда впервые по телевидению показали ракету, с помощью которой основоположник практической космонавтики С.Королев запустил в космос Ю.Гагарина, Греттруп молча плакал, узнав ракету своего коллектива, — так писала в своих воспоминаниях жена немца.

Пуски

Первый пуск ракеты-носителя был проведен с УКСС 15 мая 1987 года в 21 ч 30 мин по московскому времени. Вместо орбитального корабля «Буран» в качестве полезной нагрузки был использован макет космического аппарата «Скиф-ДМ». Пуск прошел успешно. Изменение всех параметров движения ракеты по времени полностью соответствовало данным предварительного моделирования.

Первый успешный пуск ракеты «Энергия» подтвердил, что создана универсальная РН «Энергия» сверхтяжелого класса, не имеющая по своим возможностям аналогов в мировом ракетостроении.

Второй пуск РН «Энергия», на этот раз с ОК «Буран» намечался на 29 октября 1988 года. Подготовка к запуску проходила успешно, метеоусловия были благоприятными, скорость ветра не превышала 1 м/с. Все команды по циклограмме предстартовой подготовки исполнялись нормально, оставалось отвести от ОК «Буран» переходный стыковочный блок, но за 51 с до запуска двигательных установок РН «Энергия» автоматизированная система подготовки пуска выдала команду «Автоматическое прекращение пуска». Государственная комиссия приняла решение отложить старт и слить низкокипящие компоненты топлива из ОК и РН. Анализ показал, что отбой запуска произошел из-за несвоевременного отвода платы системы азимутального наведения (прицеливания) РН и, следовательно, задержки с отводом фермы, на которой она располагалась. После устранения всех замечаний и докладов о готовности к повторному запуску было принято решение о проведении повторной предстартовой подготовки и запуске 15 ноября 1988 года в 6 часов утра московского времени.

Перенос пуска совпал с резким изменением погодных условий: 15 ноября 1988 года они были на грани установленных ограничений на пуск — порывы ветра достигали 20 м/с, что превышало установленные ограничения. Пуск прошел без замечаний. Все системы в полете работали нормально. Корабль был выведен на орбиту с максимальной высотой 263 км и минимальной высотой 251 км. Общее время полета ОК «Буран» составило 206 мин. Проделав все предпосадочные маневры, он вышел точно на посадочную полосу, приземлился, пробежал 1620 м и остановился посреди посадочной полосы. Боковое отклонение составило всего 3 м, а продольное — 10 м при скорости встречного ветра 17 м/с.

Впервые в мировой практике была проведена полностью автоматическая посадка космического аппарата такого класса.

Алюминий

«Крылатый металл», любимец авиаконструкторов. Чистый алюминий втрое легче стали, очень пластичен, но не очень прочен.

Технологии Как SpaceX сетями обтекатель ракеты ловил

Чтобы он стал хорошим конструкционным материалом, из него приходится делать сплавы. Исторически первым был дуралюмин (дюралюминий, дюраль, как мы его чаще всего зовем) — такое имя дала сплаву немецкая фирма, впервые его предложившая в 1909 году (от названия города Дюрен). Этот сплав, кроме алюминия, содержит небольшие количества меди и марганца, резко повышающие его прочность и жесткость. Но есть у дюраля и недостатки: его нельзя сваривать и сложно штамповать (нужна термообработка). Полную прочность он набирает со временем, этот процесс назвали «старением», а после термообработки состаривать сплав нужно заново. Поэтому детали из него соединяют клепкой и болтами.

В ракете он годится только на «сухие» отсеки — клепаная конструкция не гарантирует герметичности под давлением. Сплавы, содержащие магний (обычно не больше 6%), можно деформировать и сваривать. Именно их больше всего на ракете Р-7 (в частности, из них изготовлены все баки).

Американские инженеры имели в своем распоряжении более прочные алюминиевые сплавы, содержащие до десятка разных компонентов. Но прежде всего наши сплавы проигрывали заокеанским по разбросу свойств. Понятно, что разные образцы могут немного отличаться по составу, а это приводит к разнице в механических свойствах. В конструкции часто приходится полагаться не на среднюю прочность, а на минимальную, или гарантированную, которая у наших сплавов могла быть заметно ниже средней.

В последней четверти XX века прогресс в металлургии привел к появлению алюминий-литиевых сплавов. Если до этого добавки в алюминий были направлены только на увеличение прочности, то литий позволял сделать сплав заметно более легким. Из алюминий-литиевого сплава был сделан бак для водорода ракеты «Энергия», из него же делают сейчас и баки «Шаттлов».

Наконец, самый экзотический материал на основе алюминия — боралюминиевый композит, где алюминию отведена та же роль, что и эпоксидной смоле в стеклопластике: он удерживает вместе высокопрочные волокна бора. Этот материал только-только начал внедряться в отечественную космонавтику — из него сделана ферма между баками последней модификации разгонного блока «ДМ-SL», задействованного в проекте «Морской старт». Выбор конструктора за прошедшие 50 лет стал намного богаче. Тем не менее как тогда, так и сейчас алюминий — металл №1 в ракете. Но, конечно же, есть и целый ряд других металлов, без которых ракета не сможет полететь.

Титан и титановые сплавы Самый модный металл космического века. Вопреки широко распространенному мнению, титан не очень широко применяется в ракетной технике — из титановых сплавов в основном делают газовые баллоны высокого давления (особенно для гелия). Титановые сплавы становятся прочнее, если поместить их в баки с жидким кислородом или жидким водородом, в результате это позволяет снизить их массу. На космическом корабле ТКС, который, правда, так ни разу и не полетел с космонавтами, привод стыковочных механизмов был пневматическим, воздух для него хранился в нескольких 36-литровых шар-баллонах из титана с рабочим давлением 330 атмосфер. Каждый такой баллон весил 19 килограммов. Это почти впятеро легче, чем стандартный сварочный баллон такой же вместимости, но рассчитанный на вдвое меньшее давление!

Крылатыми ракетами оснащаются

Морские системы

  • ракетный комплекс Калибр-НК (Club-N), устанавливаемый на надводные корабли. Интегрирован в вертикальную пусковую установку 3С14.
  • модульный ракетный комплекс Club-U, устанавливаемый на надводные корабли.
  • ракетный комплекс Калибр-ПЛ (Club-S), устанавливаемый на подводные лодки. Интегрирован в 533-мм торпедные аппараты.

Сухопутные системы

Самоходная пусковая установка Club-M на базе МЗКТ-7930

Сухопутные варианты комплекса при условии использования ракет дальностью свыше 500 км являются наиболее дискуссионными, так как потенциально нарушают договор об РСМД. По мнению разведки США, такие комплексы с крылатыми ракетами Калибр были созданы в РФ не только в варианте прототипа, а приняты на вооружение и пусковые установки и системы управления пуском разработаны на базе ОТРК «Искандер». По мнению ЦРУ, на боевом дежурстве находятся 2 дивизиона таких комплексов из 8 самоходных пусковых установок с большим запасом таких ракет. Другая версия, что ракета, используемая данными комплексами, является наземным вариантом ракеты X-101, а не Калибр.

  • ОТРК «Искандер-К» (предположительно)
  • контейнерный ракетный комплекс Club-K. Интегрированный в 20- и 40-футовые ISO-контейнеры.

Носители

Макет пусковой установки 3С-14

Ракетами семейства «Калибр-НК» и «Калибр-ПЛ» оснащаются следующие корабли российского и иностранных флотов:

  • Фрегаты проекта 22350;
  • Фрегаты проекта 11356;
  • Фрегаты типа «Тальвар»;
  • Фрегаты типа «Шивалик»;
  • Корветы проекта 20385;
  • Ракетные корабли проекта 11661 (в зависимости от модификации);
  • Малые ракетные корабли проекта 21631;
  • Малые ракетные корабли проекта 22800;
  • Патрульные корабли проекта 22160 (в зависимости от модификации);
  • Подводные лодки проекта 955 «Борей» (в качестве неосновного вооружения); [источник не указан 946 дней]
  • Подводные лодки проекта 885 «Ясень»;
  • Подводные лодки проекта 636 «Варшавянка»;
  • Подводные лодки проекта 677.

По словам бывшего Главкома ВМФ Виктора Чиркова, в ближайшем будущем большинство кораблей ВМФ РФ советской постройки, включая крейсера проекта 1144, эсминцы проекта 956 и большие противолодочные корабли проекта 1155, пройдя модернизацию, получат на вооружение ракетные комплексы с ракетами Калибр и Оникс.

«За последние годы разработано, сдано или сдаётся в эксплуатацию пусковое оборудование и средства загрузки для ракетных комплексов 3К14, 3М55, 9К, 3К96, а также для малогабаритного торпедного комплекса „Пакет“, размещаемых на новейших кораблях ВМФ России. Семейство вертикальных пусковых установок надводных кораблей типа 3С14 обеспечивает размещение на НК проектов 1161К, 21631, 11356М изделий комплекса 3К14 , а на НК проектов 22350, 20385, 11442М кроме того ещё и изделий комплексов 3М55 и 9К . КБСМ является разработчиком и поставщиком серийно изготавливаемых транспортно-пусковых стаканов из композиционных материалов с разрушаемой крышкой для изделий комплексов 3К14 и 9К. Для загрузки изделий указанных комплексов в ПУ НК созданы комплексы средств погрузки (КСП) типа СМ-456». Маловероятно, что неприменимость ПКРК «Оникс» в некоторых УКСК связана с размерами боеприпасов, так как 3М14 и 3М55 (без ТПС) имеют примерно одинаковую длину (по некоторым данным − около 8,1 и 8,6 м). Скорее всего боекомплект 3С14 урезается искусственно за счёт системы управления. Особенно нелепо это выглядит на примере 20385 (корвет с «Ониксом») и 11356 (фрегат без «Оникса»).

Из истории данного вопроса


Ракетный двигатель – один из старейших видов двигателя, известных человечеству. Мы не можем точно ответить на вопрос, когда именно была изготовлена первая ракета. Есть предположение, что это сделали еще древние греки (деревянный голубь Архита Тарентского), но большинство историков считает родиной данного изобретения Китай. Это произошло примерно в III столетии нашей эры, вскоре после открытия пороха. Первоначально ракеты использовали для фейерверков и других развлечений. Пороховой ракетный двигатель был достаточно эффективен и прост в изготовлении.

Первая боевая ракета была разработана в 1556 году Конрадом Хаасом, который придумывал различные виды вооружений для императора Фердинанда I. Этого изобретателя можно назвать первым создателем теории ракетных двигателей, также он является автором идеи многоступенчатой ракеты – в трудах Хааса подробно описан механизм работы летательного аппарата, состоящего из двух ракет. Изыскания продолжил поляк Казимир Семенович, живший в середине XVII века. Однако все эти проекты так и остались на бумаге.

Практическое использование ракет началось только в XIX столетии. В 1805 году британский офицер Уильям Конгрив продемонстрировал пороховые ракеты, которые имели небывалую по тем временам мощность. Презентация произвела должное впечатление, и ракеты Конгрива были приняты на вооружение английской армии. Их главным преимуществом, по сравнению со ствольной артиллерией, была высокая мобильность и относительно небольшая стоимость, а основным недостатком – кучность огня, которая оставляла желать лучшего. К концу XIX века широкое распространение получили нарезные орудия, стрелявшие очень точно, поэтому ракеты были сняты с вооружения.

В России данным вопросом занимался генерал Засядко. Он не только усовершенствовал ракеты Конгрива, но и первым предложил использовать их для полета в космос. В 1881 году российский изобретатель Кибальчич создал собственную теорию ракетных двигателей.

Огромный вклад в развитие этого направления техники внес еще один наш соотечественник – Константин Циолковский. Среди его идей жидкостный ракетный двигатель (ЖРД), работающий на смеси кислорода и водорода.

В начале прошлого столетия энтузиасты во многих странах мира занимались созданием жидкостного РД, первым добился успеха американский изобретатель Роберт Годдард. Его ракета, работающая на смеси бензина и жидкого кислорода, успешно стартовала в 1926 году.

Вторая мировая война стала периодом возвращения ракетного оружия. В 1941 году на вооружение Красной армии была принята установка залпового огня БМ-13 – знаменитая «Катюша», а в 1943 – немцы начали использование баллистической Фау-2 с жидкостным ракетным двигателем. Она была разработана под руководством  Вернера фон Брауна, который позже возглавил американскую космическую программу. Германией также было освоено производство КР Фау-1 с прямоточными реактивным мотором.

Ракета Фау-2. Немцы называли ее «оружие возмездия». Правда, оно не слишком помогло Гитлеру

В разные годы предпринимались попытки создания ракетных двигателей, работающих за счет энергии ядерного распада (синтеза), но до практического применения подобных силовых установок дело так и не дошло. В 70-е годы в СССР и США началось использование электрических ракетных двигателей. Сегодня они применяются для коррекции орбит и курса космических аппаратов. В 70-е и 80-е годы были эксперименты с плазменными РД, считается, что они имеют хороший потенциал. Большие надежды связывают с ионными ракетными двигателями, использование которых теоретически может значительно ускорить космические аппараты.

Однако пока почти все эти технологии находятся в зачаточном состоянии, и основным транспортным средством покорителей космоса остается старая добрая «химическая» ракета. В настоящее время за титул «самый мощный ракетный двигатель в мире» соревнуется американский F-1, участвовавший в лунном проекте, и советский РД-170/171, который использовался в программе «Энергия-Буран».


С этим читают