Самые дорогие редкоземельные металлы

Уран

Уран, или ураний? — это, пожалуй, самый известный элемент среди всех актиноидов. Элемент не имеет стабильных и постоянных изотопов, поэтому является слаборадиоактивным. При нормальных условиях является металлом серого цвета. Когда-то вещество использовали для окрашивания стекла и керамики. Однако сейчас достоверно известно, что в знаменитой американской бомбе «Малыш» содержался уран. Бомба уничтожила Хиросиму в 1945 году.


В конце XIX века при исследовании этого элемента Беккерель случайно обнаружил его радиоактивность, что впоследствии подтвердила Мария Кюри.

Уран очень широко распространен в земной коре, в отличие от других представителей группы редкоземельных металлов. Однако основная масса элемента сосредоточена в породах с очень высоким содержанием кремния.

История

В 1794 году финский химик Юхан Гадолин, исследуя рудные образцы вблизи шведского местечка Иттербю (в будущем в честь этой деревни были названы редкоземельные элементы иттрий (Y), тербий (Tb), эрбий (Er) и иттербий (Yb)), обнаружил неизвестную до того «редкую землю», которую назвал по месту находки иттриевой.

Позже, немецкий химик Мартин Клапрот разделил эти образцы на две «земли», для одной из которых он оставил имя иттриевой, а другую назвал цериевой (в честь открытой в 1801 году малой планеты Церера, которая, в свою очередь, была названа по имени древнеримской богини Цереры).

Немного спустя шведский учёный К. Мосандер сумел выделить из того же образца ещё несколько «земель». Все они оказались оксидами новых элементов, получивших название редкоземельных. Ввиду сложности разделения оксидов, ложные объявления об открытии новых редкоземельных элементов исчислялись десятками. Совместно к 1907 году химики обнаружили и идентифицировали всего 16 таких элементов. На основе изучения рентгеновских свойств всем элементам были присвоены атомные номера 21(скандий), 39 (иттрий) и от 57 (лантан) до 71 (лютеций), кроме 61.

По возрастанию атомного веса они расположились следующим образом:

Z Символ Имя Этимология
21 Sc Скандий в честь Скандинавии
39 Y Иттрий в честь шведской деревни Иттербю
57 La Лантан от. греч. «скрытный»
58 Ce Церий в честь малой планеты Церера, в свою очередь названной от имени богини Цереры
59 Pr Празеодим от греч. «зелёный близнец», из-за зелёной линии в спектре
60 Nd Неодим от греч. «новый близнец»
61 Pm Прометий от имени мифического героя Прометея, похитившего у Зевса огонь и передавшего его людям.
62 Sm Самарий по имени минерала самарскит, в котором был обнаружен
63 Eu Европий в честь Европы
64 Gd Гадолиний в честь Юхана Гадолина
65 Tb Тербий в честь шведской деревни Иттербю
66 Dy Диспрозий от греч. «труднодоступный»
67 Ho Гольмий в честь Стокгольма
68 Er Эрбий в честь шведской деревни Иттербю
69 Tm Тулий от старого названия Скандинавии
70 Yb Иттербий в честь шведской деревни Иттербю
71 Lu Лютеций от древнеримского названия Парижа

Вначале ячейка под номером 61 была незаполненной, в дальнейшем это место занял прометий, выделенный из продуктов деления урана и ставший 17-м членом этого семейства.

Особенности получения редкоземельных металлов

Извлечение редкоземельных металлов из земли в чистом виде не возможно. Это связано с их высокой химической активностью. В природных условиях они образуют многоатомные сложные соединения, входящие в состав горных пород. Всего на сегодняшний день известно около 250 минералов, содержащих в составе редкоземельные элементы. При этом не более 60 из них имеют промышленное значение. В остальных доля чистого металла составляет менее 5% и их переработка не рентабельна.

Металлы редкоземельной группы очень часто встречаются в одном и том же месторождении. Поэтому при поступлении сырья на завод редкоземельных металлов, сначала проводится исследование на процентное содержание различных элементов в минерале. Полученные результаты помогут определить, какой именно обработке подвергнуть сырье для получения максимальной экономической выгоды.

Получение редкоземельных металлов разделяется на несколько этапов. В первую очередь раскладывают на составные части сложные соединения. Для этого применяются реакции термического разложения. Они позволяют выделить двухатомные соединения металлов, которые подвергаются дальнейшей обработке. Наиболее часто проводят реакцию восстановления хлорида или фторида более активным металлом (кальцием, натрием, литием). Также используют процедуру электролиза, ионной хроматографии или экстракции.

Применение редкоземельных металлов охватывает многие отрасли промышленности. В стекольном производстве применяют оксиды лантана, церия, празеодима и неодима для повышения прозрачности стекла. Также при помощи металлов данной группы изготавливают термостойкие и невосприимчивые к воздействию кислоты стекла. Редкоземельные элементы входят в состав пигментов, применяемых в лакокрасочной промышленности. В автомобильном производстве лантан используется при производстве аккумуляторов для гибридных машин.

В военном деле вещества используются для изготовления взрывчатых веществ. На основе сплавов неодима, самария, иттрия, европия и эрбия производят сверхмощные постоянные магниты.Редкоземельные элементы в качестве присадок добавляют в некоторые виды сплавов для придания им необходимых свойств. В частности данные металлы придают материалу жаростойкость и повышенную защиту от воздействия коррозии. В чистом виде они практически не используются в виду своей дороговизны.

Рынок редкоземельных металлов

В настоящее время рынок редкоземельных металлов в упадке, и Китай планирует ограничить годовое производство до 140 000 метрических тонн, начиная с 2020 года, чтобы попытаться снова поднять цены.

Причины падения цен на редкоземельные металлы

Начнем с супермагнитов.

Неодим – редкоземельный элемент, примерно с концентрацией в земной коре, как свинец и хром, но сосредоточен в высокосортных рудах. В 1982 году Дженерал Моторс и японская компания Сумитомо обнаружили, что смешивание одной четвертой неодима по весу с тремя четвертями железа и бора может сделать самое мощное семейство супермагнетиков тогда известным, Nd2Fe14B и что свойства этих магнитов могут быть дополнительно улучшены путем добавления следов других редкоземельных металлов – празеодима плюс диспрозий или более дорогой тербий.

Китай, обладая большим количеством всех этих элементов и предпочитая добавленную стоимость экспорту сырья, создал индустрию супермагнитов, чьи низкие цены захватили большую часть мирового рынка и закрыли конкурентов. Китай также энергично проводит исследования и разработки, чтобы найти дальнейшее применение своей редкоземельной щедрости.

Даже в 2015 году, на долю Китая приходилось более 80% мирового редкоземельного производства, сейчас около 70 процентов – это неразумный баланс.

Технологические решения по уменьшению спроса

С 2010 года промышленники предупредили, что рынок редкоземельных металлов с монополией Китая на элементы супермагнитов могут сделать растущий глобальный переход на электрические автомобили и ветряные турбины невозможным – потому что их двигатели и генераторы якобы требовали супермагнитов и, следовательно, этих элементов. Некоторые такие сообщения были даже в 2017 году. Но это все подвергается сомнению. Все, что делают такие вращающиеся машины с постоянными магнитами, также может быть сделано или лучше двумя другими видами двигателей, которые не имеют магнитов.

Сейчас двигатели применяют современную управляющую программу и силовую электронику из кремния, самого распространенного твердого элемента на Земле.

Первый вид – это асинхронный двигатель, изобретенный Николой Теслой 130 лет назад и используемый в каждом электромобиле Приус и Тесла сегодня. Без магнитов изготавливают двигатели не только в электрических автомобилях, но также в ветротурбинах, что освобождает тонны неодима. То, что некоторые ветряные турбины и производители используют генераторы с постоянными магнитами, не означает, что другие должны их изготавливать также.

Точно также красные люминофоры в компактных люминесцентных лампах традиционно используют европий. Но эти лампы теперь в значительной степени вытеснены белыми светодиодами, которые используют примерно на 96 процентов меньше европия. Кроме того, новые красные люминофоры не используют редкоземельные металлы, в то время как последний зеленый люминофор сокращает использование тербия более чем на 90 процентов.

Эрбий в волоконно-оптических ретрансляторах – еще один редкоземельный элемент. Эрбий необходим чтобы увеличить емкость волокна. Ширина полосы частот сейчас увеличена путем передачи по мултиплексу и беспроволочными рационализаторствами.

Некоторые гибридные автомобили, такие как Honda Insight 2001 года, использовали никель-металл-гидридные батареи, содержащие лантан, но теперь они в значительной степени заменены более легкими литиевыми батареями, которые обычно не используют лантан. Кроме того, электромобилям с литиевыми батареями требуется в два—три раза меньше батарей по массогабаритным характеристикам.

Лидирующие на рынке литиевые батареи электромобиля в мире, как и их двигатели, вообще не используют редкие металлы. Количество электромобилей в мире растет.  Появляются новые технологии в виде мощных потенциальных заменителей батарей (в частности, графеновые суперконденсаторы).

История[править]

В 1794 году финский химик Юхан Гадолин, исследуя рудные образцы вблизи шведского местечка Иттерби, обнаружил неизвестную до того «редкую землю», которую назвал по месту находки иттрий. Позже, немецкий химик Мартин Клапрот разделил эти образцы на две «земли», для одной из которых он оставил имя иттрий, а другую назвал церий (в честь недавно открытой малой планеты Церера и по имени древнегреческой богини Цереры). Немного спустя, шведский ученый К. Мосандер сумел выделить из того же образца еще несколько «земель». Все они оказались оксидами новых элементов, и получили название редкоземельные металлы. Совместно, к 1907 году химики обнаружили и идентифицировали всего 14 таких элементов. На основе изучения рентгеновских свойств всем элементам были присвоены атомные номера от 57 (лантан) до 71 (лютеций), кроме 61. По возрастанию атомного веса они расположились следующим образом:

Z Имя Этимология
57 La Лантан от греч. «скрытный»
58 Ce Церий в честь Цереры
59 Pr Празеодим от греч. «зеленый близнец», из-за зеленой линии в спектре
60 Nd Неодим «новый близнец»
61 Pm Прометий от имени мифического героя Прометея, похитившего у Зевса огонь и передавшего его людям.
62 Sm Самарий по имени минерала самарскит, где тот был обнаружен
63 Eu Европий в честь Европы
64 Gd Гадолиний в честь Иохана Гадолина
65 Tb Тербий в честь Иттербийского месторождения
66 Dy Диспрозий от греч. «труднодоступный»
67 Ho Гольмий в честь Стокгольма
68 Er Эрбий в честь Шведского города Иттерби
69 Tm Тулий от старого названия Скандинавии
70 Yb Иттербий в честь Шведского города Иттерби
71 Lu Лютеций от древнеримского названия Парижа

Вначале, ячейка под номером 61 была незаполненной, в дальнейшем это место занял прометий, выделенный из продуктов деления урана и ставшим 15-м членом этого семейства.

Происхождение названияправить

Название «редкоземельные» дано в связи с тем, что они, во-первых, сравнительно редко встречаются в земной коре (содержание (1,6-1,7)×10−2% по массе) и, во-вторых, образуют тугоплавкие, практически не растворимые в воде оксиды (такие оксиды в начале XIX века и ранее назывались «землями»).

Название «редкоземельные элементы» исторически сложилось в конце XVIII — начале XIX века, когда ошибочно считали, что минералы, содержащие элементы двух подсемейств, — цериевого (La, Се, Рг, Nd, Sm, Eu) и иттриевого (Y, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) — редко встречаются в земной коре. Однако по запасам сырья редкоземельные элементы не являются редкими, по суммарной распространенности они превосходят свинец в 10 раз, молибден — в 50 раз, вольфрам — в 165 раз.

Применение редкоземельных металлов в технике

Выше мы разобрали, что такое редкоземельные металлы. Теперь рассмотрим вопрос о том, как они используются в технике и электронике.

• Неодим требуется в производстве мощных магнитов для жестких дисков и динамиков. Также находит применение в электромобилях и ветровых турбинах.

• Лантан применяется в фотокамерах и телескопических объективах, студийном освещении и кинопроекции, в аккумуляторах и водородных хранилищах.

• Церий необходим в автомобильных каталитических нейтрализаторах: он дает им возможность работать при повышенных температурах. Помимо этого, играет ключевую роль в конвертерных химических реакциях, а также в переработке сырой нефти.

• Празеодим нужен для разработки усиленных металлов и стекол, авиационных двигателей и защитных масок для сварщиков и стекольников.

• Гадолиний используется в дисплеях, рентгеновских системах и МРТ-аппаратуре.

• Иттрий, тербий и европий требуются при создании дисплеев телевизоров и компьютеров, энергоэффективных лампочек и люминесцентных ламп, а также для создания стержней управления реакторами.

Помимо индустрии электроники в значительной степени от редкоземельных металлов зависят еще две отрасли – электрический автопром и ветроэнергетика. Компания Tesla создает двигатели с постоянными магнитами на основе неодима и празеодима.


Электродвигатели с содержанием редкоземельных металлов отличаются легкостью, мощностью и экономно расходуют заряд.

Согласно исследованию Argonaut, в электроавтомобилях используется на 1 кг больше редкоземельных магнитов, чем в авто с традиционным двигателем внутреннего сгорания.

В ветроэнергетике также огромным спросом пользуются неодим и празеодим. Как ожидается, спрос на эти металлы в течение следующих лет увеличится в 2,5 раза.

В 2016 году Россия импортировала до 90% редкоземельных металлов. Теперь курс изменился: к 2020 году РФ намерена отказаться от их импорта вовсе.

Применение

Редкоземельные элементы используют в различных отраслях техники: в радиоэлектронике, приборостроении, атомной технике, машиностроении, химической промышленности, в металлургии и др. Широко применяют La, Ce, Nd, Pr в стекольной промышленности в виде оксидов и других соединений. Эти элементы повышают светопрозрачность стекла. Редкоземельные элементы входят в состав стёкол специального назначения, пропускающих инфракрасные лучи и поглощающих ультрафиолетовые лучи, кислотно- и жаростойких стёкол. Большое значение получили редкоземельные элементы и их соединения в химической промышленности, например, в производстве пигментов, лаков и красок, в нефтяной промышленности как катализаторы. Редкоземельные элементы применяют в производстве некоторых взрывчатых веществ, специальных сталей и сплавов, как газопоглотители. Монокристаллические соединения редкоземельных элементов (а также стёкла) применяют для создания лазерных и других оптически активных и нелинейных элементов в оптоэлектронике. На основе Nd, Y, Sm, Er, Eu с Fe-B получают сплавы с рекордными магнитными свойствами (высокие намагничивающая и коэрцитивная силы) для создания постоянных магнитов огромной мощности, по сравнению с простыми ферросплавами.

Потребление редкоземельных металлов в России сейчас составляет порядка 2000 тонн в год. Примерно 70% используется в электронике, несколько сотен тонн в год также необходимо для выпуска катализаторов для нефтепереработки, меньшее количество применяется при производстве магнитов и в оптике. В целом лишь около четверти редкоземельных металлов в России используется для производства продукции гражданского назначения, остальное — для выпуска изделий военно-технического назначения. Основные потребители редкоземельных металлов в России — предприятия, входящие в структуру «Ростеха»: «Росэлектроника», Объединённая двигателестроительная корпорация», холдинг «Швабе» и т.д.

Топ-5 самых редких металлов

Среди всех известных металлов на нашей планете можно выделить 5 более редких элементов.

Калифорний

Этот материал считается самым дорогим и редким в мире. Особенности:

  1. Общее количество к началу XXI века — не более 10 грамм. Производством занимается только 2 лаборатории.
  2. Радиоактивность
  3. Серебристо-белый цвет.

Применяется в для ядерной энергетике, медицине (при облучении злокачественных новообразований), изготовлении измерительных приборов.

Осмий

Еще одно обозначение — осмий 187. Многие причисляют его к группе благородных. Особенности:

  • серебристо-голубой цвет;
  • большой показатель плотности;
  • высокая температура плавления.

Применяется в электронной, химической промышленности, медицине.

Осмий 187 (Фото: Instagram / blog_dylym)

Галий

Часто используется фокусниками для представлений, поскольку плавится от температуры тела. Другие особенности:

  1. Если залить галий серной кислотой, он будет пульсировать.
  2. Серебристо-голубой цвет.

Применяется для изготовления термометров из кварца, металлических клеев, сверхвысокочастотной электроники, лазерных установок.

Рений

Впервые был произведен в 1926 году. Особенности:

  1. Серебристо-белый цвет.
  2. Один грамм рения получается после переработки нескольких сотен килограмм молибдена.

Применяется для изготовления турбинных лопаток, реактивных двигателей, сверхточных измерительных приборов.

Рений (Фото: Instagram / chemical_elements)

Тантал

Обладает уникальным свойством биосовместимости. Из него изготавливаются высококачественные протезы, которые хорошо воспринимаются организмом. Применяется в химической промышленности, производстве электронных приборов.

К группе редких металлов относятся разные химические элементы, содержание которых в природе минимально по сравнению с остальными. Они похожи многими характеристиками, но обладают уникальными свойствами. Применяются в разных сферах промышленности, продолжают изучаться учеными.

Химические свойства

Редкоземельные металлы в сухом воздухе покрываются тонкой пленкой, в основе которой лежат их оксиды. Она служит эффективной защитой как от механического, так и химического воздействия.

Во влажной среде они начинают медленно окисляться и трансформируются в гидроксиды. Данные процессы имеют место при температуре окружающей среды более 250 ºC. При 450 ºC редкоземельные металлы в кислородной среде сгорают до оксидов с активным выделением тепла.

Редкоземельные металлы охотно вступают в реакции с серой и хлором. При нагревании также взаимодействует с бромом и йодом.

Редкоземельные металлы растворяются в кислотах минеральной группы. Инертны по отношению к большинству видов щелочей.

Свойства и получение

Оксиды редкоземельных элементов. По часовой стрелке от центрального первого: празеодим, церий, лантан, неодим, самарий, гадолиний

Редкоземельные элементы проявляют между собой большое сходство химических и некоторых физических свойств, что объясняется почти одинаковым строением наружных электронных уровней их атомов. Редкоземельные элементы — металлы, их получают восстановлением соответствующих оксидов, фторидов, электролизом безводных солей и другими методами.

Химические свойства

Скандий, иттрий и лантаноиды имеют высокую реакционную способность. Химическая активность этих элементов особенно заметна при повышенных температурах. При нагревании до 300—400 °C металлы реагируют даже с водородом, образуя RH3 и RH2 (символ R выражает атом редкоземельного элемента). Эти соединения достаточно прочные и имеют солевой характер. При нагревании в кислороде металлы легко реагируют с ним, образуя оксиды: R2O3, CeO2, Pr6O11, Tb4O7 (лишь только Sc и Y при помощи образования защитной оксидной плёнки являются стойкими на воздухе, даже при нагревании до 1000 °C). Во время горения данных металлов в атмосфере кислорода выделяется большое количество тепла. При сгорании 1 г лантана выделяется 224,2 ккал тепла. Для церия характерной особенностью является свойство пирофорности — способность искриться при разрезании металла на воздухе.

Диоксид церия

Лантан, церий и другие металлы уже при обычной температуре реагируют с водой и кислотами-неокислителями, выделяя водород. Из-за высокой активности к атмосферному кислороду и воде куски лантана, церия, празеодима, неодима и европия следует хранить в парафине, остальные из редкоземельных металлов окисляются плохо (за исключением самария, который покрывается плёнкой оксидов, однако не полностью разъедается ей) и их можно хранить в нормальных условиях без противоокислительных веществ.

Химическая активность редкоземельных металлов неодинакова. От скандия до лантана химическая активность возрастает, а в ряду лантан — лютеций — снижается. Отсюда следует, что наиболее активным металлом является лантан. Это обуславливается уменьшением радиусов атомов элементов от лантана до лютеция с одной стороны, и от лантана до скандия — с другой.

Эффект «лантаноидной контракции» (сжатия) приводит к тому, что следующие после лантаноидов элементы (гафний, тантал, вольфрам, рений, осмий, иридий, платина) имеют уменьшенные радиусы атомов на 0,2—0,3 Å отсюда и очень схожие их свойства со свойствами соответствующих элементов пятого периода.

В элементах — скандий, иттрий, лантан — d-оболочка предпоследнего электронного слоя только начинает образовываться, поэтому радиусы атомов и активность металлов в этой группе возрастают сверху вниз. Этим свойством группа отличается от других побочных подгрупп металлов, у которых порядок изменения активности противоположный.

Поскольку радиус атома иттрия (0,89 Å) близок к радиусу атома гольмия (0,894 Å), то по активности этот металл должен занимать одно из предпоследних мест. Скандий же из-за своей активности должен располагаться после лютеция. В этом ряду ослабляется действие металлов на воду.

Редкоземельные элементы чаще всего проявляют степень окисления +3. Из-за этого наиболее характерными являются оксиды R2O3 — твёрдые, крепкие и тугоплавкие соединения. Будучи основными оксидами, они для большинства элементов способны соединяться с водой и создавать основания — R(OH)3. Гидроксиды редкоземельных металлов малорастворимы в воде. Способность R2O3 соединяться с водой, то есть основная функция, и растворимость R(OH)3 уменьшаются в той же последовательности, что и активность металлов: Lu(OH)3, а особенно Sc(OH)3, проявляют некоторые свойства амфотерности. Так, кроме раствора Sc(OH)3 в концентрированном NaOH, получена соль: Na3Sc(OH)6·2H2O.

Поскольку металлы данной подгруппы активны, а их соли с сильными кислотами растворимы, они легко растворяются и в кислотах-неокислителях, и кислотах-окислителях.

Все редкоземельные металлы энергично реагируют с галогенами, создавая RHal3 (Hal — галоген). С серой и селеном они также реагируют, но при нагревании.

Металлы, составляющие группу редкоземельных

В состав группы редкоземельных металлов входят следующие элементы:

  1. Скандий. 21-й элемент Периодической системы элементов. Получил своё название от Скандинавского полуострова, где впервые был обнаружен.
  2. Иттрий. 39-й элемент системы. Его название связано с месторождением металлов в шведском селе Иттербю. Ещё несколько элементов этой группы впоследствии получили названия, так или иначе связанные с этим месторождением.
  3. Лантан. Это 57-й элемент, который получил своё название от греческого слова «скрытный».
  4. Церий. 58-й элемент. Назван в честь римской богини плодородия и урожая Цереры.
  5. Празеодим. 59-й элемент. В своём спектральном анализе содержит зелёный свет, за счет чего и получил такое латинское название – «зелёный близнец». Входил в состав дидима вместе неодимом, отсюда и называется «близнец».
  6. Неодим. 60-й элемент, который носит латинское название «новый близнец».
  7. Прометий. 61-й элемент, названный в честь древнегреческого героя Прометея, давшего людям огонь. Этот элемент был выделен в процессе искусственного деления урана.
  8. Самарий. 62-й элемент. Был выделен из минерала самарксита, поэтому получил такое название.
  9. Европий. 63-й элемент. Название получил в честь богини Европы.
  10. Гадолиний. 64-й элемент. Его название связано с учёным-первооткрывателем группы редкоземельных металлов Иохана Гадолина.
  11. Тербий. 65-й элемент, получивший своё название от названия месторождения, где он был впервые найден – Иттербийского, которое расположено в Швеции.
  12. Диспрозий. 66-й элемент, который получил по латыни название «труднодоступный».
  13. Гольмий. 67-й элемент, назван в честь города Стокгольм.
  14. Эрбий. 68-й элемент. Получил своё название от местечка Иттербю, расположенного в Швеции.
  15. Тулий. 69-й элемент, названный по старому названию Скандинавии.
  16. Иттербий. 70-й элемент, опять-таки его название связано со шведским селом Иттербю и его месторождением.
  17. Лютеций. 71-й элемент, который назван в честь старого названия Парижа.

Элементы, начиная от 57 элемента, носят название металлы лантанового ряда.


Скандий

Иттрий

Лантан

Церий

Празеодим

Неодим

Металлический прометий

Самарий

Европий

Гадолиний

Тербий

Диспрозий

Гольмий


Эрбий

Тулий

Иттербий

Лютеций

Автомобиль становится сокровищницей

Виды и история открытия

К категории редкоземельных металлов (РЗМ) относятся 15 химических элементов. В таблице Менделеева они находятся под порядковыми номерами от 57 до 71. Схожие по своим химическим характеристикам, в это же время этим редкоземельным элементам присуще четко выраженная уникальность. Каждому свойственны свои технологические особенности.

Редкоземельные элементы имеют 2 семейства: иттербия и церия:

  1. Семейство Иттербия: Тулий, Гольмий, Иттербий, Гадолиний, Диспрозий, Тербий, Эрбий, Лютеций.
  2. В группу Церия входят: Самарий, Неодим, Лантан, Европий, Церий, Прометий, Празеодим

Такое деление производят на основании того, как растворяются выбранные компоненты в солях серных кислот.

Немного позже к списку добавились элементы: Иттрий, Скандий, Лантан, Лютеций. Таким образом список металлов редкоземельной группы состоит из 16 элементов.

Редкоземельные металлы обладают длинной историей открытия. Первое изучение «иттриевых земель» было проведено профессором химии Гандолином в 1790-х годах. В качестве объекта исследования он использовал минерал, найденный в горах Швеции. Позже этот вид горного образования получил название в его честь — гандолинит.

В 1840-х годах Мозандер выделил окись церия. Через 5 лет он же получил тербиевую и эрбиевую земли, используя при этом уже известный нам гандолинит. Последним из семейства редкоземельных металлов был открыт прометий. Его исследованием занимались Маринский и Гленденин, которые для своих экспериментов использовали осколки деления урана в ядерном реакторе.

Открытия редкоземельной группы металлов закончились лишь в середине 20 столетия, но эффективные промышленные методы их разделения развиваются до сих пор.

Самыми ценными и дорогими из списка редкоземельной группы являются:

  1. Тербий;
  2. Неодим;
  3. Европий;
  4. Лютеций.

Распространение редкоземельных металлов

Суммарное количество по массе редкоземельных элементов в недрах Земли равняется 0,01%, что относительно немало. Это больше, чем титан и свинец, вместе взятые. Наиболее часто встречаемыми из РЗМ являются церий, неодим и лантан.

На сегодня обнаружено примерно 240 минералов, в химическом составе которых можно найти редкоземельные металлы. В 62 из них суммарный процент РЗМ достигает 10%. По своей природе они представляют собой разного вида фториды, силикаты и фосфаты. Несмотря на такое огромное количество минералов для нужд производства годятся только некоторые из них. Главным образом это монацит, бастнезит, апатит и эвксенит.

Процент соотношения между отдельными редкоземельными металлами в горных образованиях достаточно изменчив. В монацитах и бастнезитах преобладают элементы цериевой подгруппы; в апатитах — иттриевой.

Добыча

Главные месторождения РЗМ находятся на территории современного Китая, Соединенных Штатов Америки и России. Согласно экспертным данным, мировые запасы РЗМ составляют порядка 120 млн. тонн. Стоит отметить, что половина этой массы приходится на Китайскую народную республику.

Некоторые ученые заявляются, что океанское дно изобилует минералами на основе редкоземельных металлов. По их расчетам там скрывается около 130 млрд. тонн их запасов. Пока не ясно, как верно их предположение. Производство на данном этапе развития не располагает оборудованием, которое смогло бы работать на таких глубинах.

Получение

Существует несколько вариантов переработки минералов:

  1. Разложение плавиковой и серной кислотами.
  2. Хлорирование.
  3. Сплавление щелочами.

Продуктом данных реакций являются разнообразные виды хлоридов, оксидов и сульфатов, которые служат исходными материалами для получения чистых редкоземельных металлов. С этой целью используется методы химического восстановления кальцием, магнием и калием. Под этим подразумевается осаждение, ионный обмен и фракционная кристаллизация. Для очистки редкоземельных металлов от примесей применяют дистилляцию и вакуумный переплав.


С этим читают