Спутниковая связь, виды, система, оборудование, средства, орбиты, диапазоны спутниковой связи

Спутниковые разведсистемы Советского Союза

Разрабатывать корабли-спутники для разведки и полета человека в космос СССР решил в мае 1959 года. Для этого создавались пилотируемые космические корабли типа «Восток», а также фоторазведывательные «Зениты». В апреле 1962 года с «Космоса-4» провели первую телевизионную съемку земных облачных покровов. Это стало революцией при дальнейшем прогнозировании погодных условий.


«Зенит-2» был первым советским разведспутником. В марте 1964 года его приняли на вооружение. От американских аналогичных аппаратов, в которых предусматривалось возвращение только пленки, спутники серии «Восток-Д» отличало то, что при возвращении на Землю использовали более крупную капсулу, содержавшую камеры с пленками. С 1962-1968 годы фоторазведкой занимались «Зенит-2, -4».

Первое поколение спутников запускали с помощью все тех же ракетоносителей и на те же орбиты, что и пилотируемые «Востоки». Длительность полетов доходила в основном восемь суток, а запуски к 1964 году возросли до девяти в течение года. Первое происшествие по этому проекту произошло в 1964 году. Тогда на борту «Космоса-50» по окончании восьмисуточного полета произошел взрыв. В январе 1968 года с космодрома Плесецк запустили разведспутник «Космос-200». «Зениты» оснащались на тот момент самой совершенной аппаратурой.

Позднее приступили к разработке новых аппаратов «Янтарь», вслед за принятием их на вооружение они стали именоваться «Фениксом» (разработка ЦСКБ «Прогресс» Самара). Это был прототип серии спутников для оптической разведки:

  • «Янтарь-1» — обзорная фоторазведка;
  • «Янтарь-2» — детальная фоторазведка.

Военно-разведывательные спутники последних поколений в СССР

Позднее в 1978 году «Янтарь-2К» («Феникс») был принят на вооружение. Его технические характеристики не уступали американским многокапсульным спутникам типа «Большая птица». В 1974-1983 годы произвели 30 запусков ракетоносителей «Союз-У» с космическим аппаратом «Янтарь-2К».

Дважды отказывали ракетоносители и столько же раз КА подрывали на орбите, находя в них серьезные технические неисправности. Далее на основе «Янтаря» создали «Неман», спутники оптикоэлектронной разведки. Они уже могли преобразовывать фотоснимки в цифровые сигналы и передавали их по радиоканалам для наземных пунктов.

С 1980 года на «Арсенале» выпустили серию «Кобальтов» (модификацию «Янтаря-2К») — космических аппаратов для наблюдения и детальной фотосъемки поверхности земли. Их сменили «Кобальты-М» с возвращаемыми на Землю капсулами с пленками. По штату срок существования их на орбите в активной фазе составлял до 120 суток. В апреле 2010 года в Плесецке успешно запустили ракету-носитель «Союз-У» с КА «Космос-2462». На его борту был спутник оптической разведки «Кобальт-М».

В 1994 году на Байконуре запустили «Енисей», космический аппарат с новым оптикоэлектронным разведывательным спутником, который мог работать на орбите приблизительно год. Это уже был цифровой фоторазведывательный спутник пятого поколения, который мог передавать информацию в режиме близкому реальному времени. Это была более долгоживущая модификация «Дона», на борту которого было 22 спускаемые капсулы.

Сколько стоят спутники?

Строительство такой сложной машины требует массы ресурсов, поэтому исторически только правительственные ведомства и корпорации с глубокими карманами могли войти в спутниковый бизнес. Большая часть стоимости спутника лежит в оборудовании — транспондерах, компьютерах и камерах. Обычный метеорологический спутник стоит около 290 миллионов долларов. Спутник-шпион обойдется на 100 миллионов долларов больше. Добавьте к этому стоимость содержания и ремонта спутников. Компании должны платить за пропускную полосу спутника так же, как владельцы телефонов платят за сотовую связь. Обходится иногда это более чем в 1,5 миллиона долларов в год.

Другим важным фактором является стоимость запуска. Запуск одного спутника в космос может обойтись от 10 до 400 миллионов долларов, в зависимости от аппарата. Ракета Pegasus XL может поднять 443 килограмма на низкую околоземную орбиту за 13,5 миллиона долларов. Запуск тяжелого спутника потребует большей подъемной силы. Ракета Ariane 5G может вывести на низкую орбиту 18 000-килограммовый спутник за 165 миллионов долларов.

Несмотря на затраты и риски, связанные с постройкой, запуском и эксплуатацией спутников, некоторые компании сумели построить целый бизнес на этом. К примеру, Boeing. В 2012 году компания доставила в космос около 10 спутников и получила заказы на более чем семь лет, что принесло ей почти 32 миллиарда долларов дохода.

Научно-исследовательские ИСЗ.

Советские искусственные спутники Земли. Спутник серии «Космос» — ионосферная лаборатория.

Аппаратура, устанавливаемая на борту ИСЗ, а также наблюдения ИСЗ с наземных станций позволяют проводить разнообразные геофизические, астрономические, геодезические и др. исследования. Орбиты таких ИСЗ разнообразны — от почти круговых на высоте 200—300 км до вытянутых эллиптических с высотой апогея до 500 тыс. км. К научно-исследовательским ИСЗ относятся первые советские спутники, советские ИСЗ серий «Электрон», «Протон», «Космос», американские спутники серий «Авангард», «Эксплорер», «ОГО», «ОСО», «ОАО» (орбитальные геофизические, солнечные, астрономические обсерватории); английский ИСЗ «Ариель», французский ИСЗ «Диадем» и др. Научно-исследовательские ИСЗ составляют около половины всех запущенных ИСЗ.

С помощью научных приборов, установленных на ИСЗ, изучаются нейтральный и ионный состав верхней атмосферы, её давление и температура, а также изменения этих параметров. Концентрация электронов в ионосфере и её вариации исследуются как с помощью бортовой аппаратуры, так и по наблюдениям прохождения сквозь ионосферу радиосигналов бортовых радиомаяков. С помощью ионозондов детально изучены структура верхней части ионосферы (выше главного максимума электронной концентрации) и изменения электронной концентрации в зависимости от геомагнитной широты, времени суток и т. п. Все результаты исследований атмосферы, полученные с помощью ИСЗ, являются важным и надёжным экспериментальным материалом для понимания механизмов атмосферных процессов и для решения таких практических вопросов, как прогноз радиосвязи, прогноз состояния верхней атмосферы и т. п.

С помощью ИСЗ обнаружены и исследуются радиационные пояса Земли. Наряду с космическими зондами ИСЗ позволили исследовать структуру магнитосферы Земли и характер её обтекания солнечным ветром, а также характеристики самого солнечного ветра (плотность потока и энергию частиц, величину и характер «вмороженного» магнитного поля) и др. недоступные для наземных наблюдений излучения Солнца — ультрафиолетовое и рентгеновское, что представляет большой интерес с точки зрения понимания солнечно-земных связей. Ценные для научных исследований данные доставляют также и некоторые прикладные ИСЗ. Так, результаты наблюдений, выполняемых на метеорологических ИСЗ, широко используются для различных геофизических исследований.

Результаты наблюдений ИСЗ дают возможность с высокой точностью определять возмущения орбит ИСЗ, изменения плотности верхней атмосферы (в связи с различными проявлениями солнечной активности), законы циркуляции атмосферы, структуру гравитационного поля Земли и др. Специально организуемые позиционные и дальномерные синхронные наблюдения спутников (одновременно с нескольких станций) методами спутниковой геодезии позволяют осуществлять геодезическую привязку пунктов, удалённых на тысячи км друг от друга, изучать движение материков и т. п.

Виды спутников

Все спутники подразделяются на 2 вида – естественные и искусственные.

Искусственные – созданные людьми небесные тела, которые открывают возможность наблюдать и исследовать планету, а также другие астрономические объекты. Они необходимы для составления карт, прогноза погоды, радиотрансляции сигналов. Самый крупный рукотворный «попутчик» Земли — Международная космическая станция (МКС). Искусственные спутники бывают не только у нашей планеты. Свыше 10 таких небесных тел вращается вокруг Венеры и Марса.

Что такое спутник естественный? Они создаются самой природой. Происхождение их всегда вызывало неподдельный интерес ученых. Существует несколько теорий, но остановимся на официальных версиях.

Около каждой планеты имеется скопление космической пыли и газов. Планета притягивает небесные тела, которые пролетают близко к ней. В результате такого взаимодействия и образуются спутники. Также существует теория, по которой от космических тел, сталкивающихся с планетой, отделяются осколки, которые впоследствии приобретают шарообразную форму. Согласно этому предположению природный спутник Земли и есть осколок нашей планеты. Это подтверждается и сходством земного и лунного химических составов.

GPS

На данный момент спутниковые технологии являются довольно популярными системами. При этом работает сразу несколько навигационных технологий. Речь идет об американской GPS, русской ГЛОНАСС и европейской Galileo

Благодаря им можно с легкостью определить местонахождение любого объекта, а также скорость его движения, траекторию пути, причем неважно, где он находится: в воздухе, в воде или же на земле. Рассмотрим далее системы навигации подробнее


Начнем с американской GPS.

История этой разработки началась еще в 1973 году. В начале ее назвали DNSS, потом переименовали, а спустя время разработка получила современное название – GPS. Первый спутник навигационной системы был выведен на орбиту в далеком 1974 году. В 1993 году их количество уже превысило 20 штук. За счет этого сеть глобальной спутниковой системы смогла полностью покрыть земную поверхность.

Первоначально эта система, как и многие другие, работала в военных комплексах. Она была разработана для Соединенных Штатов Америки. И только в 2000 году была снята секретность с этой системы. После этого GPS распространилась у гражданских жителей и стала максимально популярной. В настоящее время Пентагон может с легкостью отключать ее над определенными территориями, где идет война, работают службы, либо же создавать помехи или загружать сигналы. Спецслужбы США могут и имеют право делать это.

Недостатки космических систем и пути их решения

Существенным недостатком в этих космических системах был способ передачи данных на Землю. Собственно это было наличие большого промежутка времени от начала съемок до передачи фотоданных на Землю. А также то, что после отделения капсулы с пленками от спутника, оставленное на нем дорогостоящее оборудование становилось ненужным. Это было частично решено, когда спутники начали оснащать не одной капсулой с пленками. Первую же проблему решили путем разработки системы электропередачи информации в реальном времени.

В 1980-х годах ввели в эксплуатацию модернизированные спутники «KH-11», действующие в инфракрасном спектре. Главное зеркало было двухметрового диаметра с разрешением до ~15 см. Большой запас топлива позволяет относить все эти спутники к работающим в космосе более пяти лет. Благодаря активной эксплуатации спутниковых разведсредств в проекте «CORONA», в ИСЗ второго поколения использовались «Ферреты», «Джампситы», ИСЗ-ретрансляторы SDS, «Спук Берды» («Каньоны»). До 1999 года по проекту «CORONA» произвели более 140 запусков спутников с приборами фоторазведки, более 100 прошли удачно.

«Совершенно секретная» информация США или «липа»?

В связи с тем, что информация о космической разведтехнике Соединенных Штатов обладает грифом «совершенно секретно», большинство данных, приводимых в открытых источниках, скорее всего ориентировочно-рекламного характера. Существуют предположения, что американцы интересовались баллистическими ракетами в СССР, их численностью, расположением северных космодромов, а также Казахстана; расположением объектов ядерной энергетики; атомными подлодками и местами их базирования и многим другим, относящимся к стратегическим особо важным объектам.

Ганимед

В отношении крупнейшего спутника Юпитера, Ганимеда, как и других космических объектов в нашей Солнечной системе, были выражены подозрения в наличие воды под поверхностью. По сравнению с другими покрытыми льдом спутниками, поверхность Ганимеда принято считать относительно тонкой и легкой для бурения.

Кроме того, Ганимед является единственным спутником в Солнечной системе, обладающим собственным магнитным полем. Благодаря этому над его полярными областями можно очень часто наблюдать северные сияния. Помимо этого, есть подозрения, что под поверхностью Ганимеда может скрываться жидкий океан. Спутник обладает разряженной атмосферой, в состав которой входит кислород. И хотя его крайне мало для поддержания той жизни, которую мы знаем, потенциал для терраформирования у спутника имеется.

В 2012 году Европейское космическое агентство запланировало космическую миссию к Ганимеду, а также двум другим спутникам Юпитера — Каллисто и Европе. Запуск собираются осуществить в 2022 году. Добраться до Ганимеда удастся 10 годами позже. Хотя все три спутника представляют большой интерес для ученых, считается, что Ганимед содержит наибольшее число интересных науке особенностей и потенциально пригоден для колонизации.

Спутниковое телевидение

Уже давно использование спутниковых систем привело к телевидению, которое работает также на определенных технологиях. С середины прошлого века все активнее используется космическое пространство, при этом сейчас оно не только служит для передачи информации на определение местонахождения некоторых объектов, но и позволяет смотреть телевизор. Как это происходит?

Для этого необходимо установить специальную мощную антенну, которая будет принимать сигнал от спутника. Благодаря ей можно ловить сигналы практически со всего мира. При этом те территории, которые способны ловить подобные волны, считаются зоной покрытия. Антенна, которая принимает сигналы, имеет вид тарелки. Так она является многим уже знакомой, так как сейчас является популярной. Благодаря таким поверхностям радиоволны отражаются, фокусируется в месте, где имеется конвектор. Он принимает сигнал, однако потом его конвертирует и отправляет на ресивер. Последний является приемником, который преобразует все полученные сигналы в радиоволны, и соответственно человек может смотреть телевизор.

Следует отметить, что применение спутниковых систем позволяет получать высококачественную картинку, а также звук. Такое свойство передачи сигнала называется цифровым. Более того, спутниковое телевидение позволяет смотреть человеку передачи со всего мира. Особенно такое будет полезно людям, которые работают на специфических работах, а также занимаются изучением языков. Это также позволяет найти огромное количество тематических телеканалов, что дает возможность смотреть мультики либо же круглосуточно искать какие-либо передачи о природе или музыке.

Благодаря спутниковому телевидению у себя дома можно расширить кругозор, также получить большое количество положительных эмоций от просмотра передач. Также это позволяет сэкономить деньги. Ведь человеку необходимо лишь заплатить за приобретение тарелки и ее настройку, далее не стоит платить за кабельного оператора. Потому что спутниковое оборудование работает только благодаря приему сигнала со спутника, а это бесплатно. Надо отметить, что подобное чаще всего выручают жителей в больших районах или, наоборот, в маленьких населенных пунктах. Во втором случае нередко аналоговая связь оставляет желать лучшего, а картинка довольно плохая. Именно поэтому многие заинтересованы в установке тарелок. Нужно заметить, что иногда также бывают проблемы с приемом сигнала, поэтому использование такой спутниковой системы действительно выручает и позволяет просматривать телевизор в любой момент.

Движение ИСЗ.

Зарубежные искусственные спутники Земли. «Джемини».

ИСЗ выводятся на орбиты с помощью автоматических управляемых многоступенчатых ракет-носителей, которые от старта до некоторой расчётной точки в пространстве движутся благодаря тяге, развиваемой реактивными двигателями. Этот путь, называемый траекторией выведения ИСЗ на орбиту, или активным участком движения ракеты, составляет обычно от нескольких сотен до двух-трёх тыс. км. Ракета стартует, двигаясь вертикально вверх, и проходит сквозь наиболее плотные слои земной атмосферы на сравнительно малой скорости (что сокращает энергетические затраты на преодоление сопротивления атмосферы). При подъёме ракета постепенно разворачивается, и направление её движения становится близким к горизонтальному. На этом почти горизонтальном отрезке сила тяги ракеты расходуется не на преодоление тормозящего действия сил притяжения Земли и сопротивления атмосферы, а главным образом на увеличение скорости. После достижения ракетой в конце активного участка расчётной скорости (по величине и направлению) работа реактивных двигателей прекращается; это — так называемая точка выведения ИСЗ на орбиту. Запускаемый космический аппарат, который несёт последняя ступень ракеты, автоматически отделяется от неё и начинает своё движение по некоторой орбите относительно Земли, становясь искусственным небесным телом. Его движение подчинено пассивным силам (притяжение Земли, а также Луны, Солнца и др. планет, сопротивление земной атмосферы и т. д.) и активным (управляющим) силам, если на борту космического аппарата установлены специальные реактивные двигатели. Вид начальной орбиты ИСЗ относительно Земли зависит целиком от его положения и скорости в конце активного участка движения (в момент выхода ИСЗ на орбиту) и математически рассчитывается с помощью методов небесной механики. Если эта скорость равна или превышает (но не более чем в 1,4 раза) первую космическую скорость (около 8 км/сек у поверхности Земли), а её направление не отклоняется сильно от горизонтального, то космический аппарат выходит на орбиту спутника Земли. Точка выхода ИСЗ на орбиту в этом случае расположена вблизи перигея орбиты. Выход па орбиту возможен и в других точках орбиты, например вблизи апогея, но поскольку в этом случае орбита ИСЗ расположена ниже точки выведения, то сама точка выведения должна располагаться достаточно высоко, скорость же в конце активного участка при этом должна быть несколько меньше круговой.

В первом приближении орбита ИСЗ представляет собой эллипс с фокусом в центре Земли (в частном случае — окружность), сохраняющий неизменное положение в пространстве. Движение по такой орбите называется невозмущённым и соответствует предположениям, что Земля притягивает по закону Ньютона как шар со сферическим распределением плотности и что на спутник действует только сила притяжения Земли.

Такие факторы, как сопротивление земной атмосферы, сжатие Земли, давление солнечного излучения, притяжения Луны и Солнца, являются причиной отклонений от невозмущённого движения. Изучение этих отклонений позволяет получать новые данные о свойствах земной атмосферы, о гравитационном поле Земли. Из-за сопротивления атмосферы ИСЗ, движущиеся по орбитам с перигеем на высоте несколько сот км, постепенно снижаются и, попадая в сравнительно плотные слои атмосферы на высоте 120—130 км и ниже, разрушаются и сгорают; они имеют, таким образом, ограниченный срок существования. Так, например, первый советский ИСЗ находился в момент выхода на орбиту на высоте около 228 км над поверхностью Земли и имел почти горизонтальную скорость около 7,97 км/сек. Большая полуось его эллиптической орбиты (т. е. среднее расстояние от центра Земли) составляла около 6950 км, период обращения 96,17 мин, а наименее и наиболее удалённые точки орбиты (перигей и апогей) располагались на высотах около 228 и 947 км соответственно. Спутник существовал до 4 января 1958, когда он, вследствие возмущений его орбиты, вошёл в плотные слои атмосферы.

Орбита, на которую выводится ИСЗ сразу после участка разгона ракеты-носителя, бывает иногда лишь промежуточной. В этом случае на борту ИСЗ имеются реактивные двигатели, которые включаются в определённые моменты на короткое время по команде с Земли, сообщая ИСЗ дополнительную скорость. В результате ИСЗ переходит на другую орбиту. Автоматические межпланетные станции выводятся обычно сначала на орбиту спутника Земли, а затем переводятся непосредственно на траекторию полёта к Луне или планетам.

Титан

Несмотря на то, что Титан, один из спутников Сатурна, находится во внешней границе Солнечной системы, этот мир является одним из наиболее интересных мест для человечества и, возможно, одним из кандидатов на будущую колонизацию.

Конечно же, для дыхания здесь потребуется использование специального оборудования (атмосфера непригодна для нас), однако необходимости в использовании специальных скафандров с регулируемым давлением здесь нет. Однако носить специальную защитную одежду, конечно, все же придется, так как здесь очень низкая температура, нередко опускающаяся до -179 градусов Цельсия. Сила гравитации на этом спутнике чуть ниже уровня гравитации на Луне, а значит ходить по поверхности будет относительно легко.

Придется, правда, серьезно подумать над тем, как выращивать урожай, и озаботиться вопросами искусственного освещения, так как солнечного света на Титан попадает всего от 1/300 до 1/1000 от земного уровня. Во всем виноваты плотные облака, которые, тем не менее, защищают спутник от чрезмерных уровней излучения.


На Титане нет воды, но есть целые океаны из жидкого метана. В связи с этим, некоторые ученые продолжают спорить над тем, могла бы ли в таких условиях образоваться жизнь. Как бы там ни было, на Титане есть что исследовать. Здесь имеется бесчисленное количество метановых рек и озер, большие горы. Кроме того, здесь должны быть просто потрясающие виды. Ввиду относительной близости Титана к Сатурну, планета на небе спутника (в зависимости от облачности) занимает до одной трети небосклона.

Определение понятия

Впервые понятие «спутник» употребил Иоганн Кеплер в работе Narratio de Iovis Satellitibus, изданной в 1611 году в Франкфурте. В обиходе спутники иногда называют лунами.

Среди астрономов есть мнение, что спутником необходимо считать объект, вращающийся вокруг центрального тела (звезды, планеты, карликовой планеты или астероида) так, что барицентр системы, состоящей из этого объекта и центрального тела, находится внутри центрального тела. Если барицентр находится вне центрального тела, объект не должен считаться спутником, а должен считаться компонентом системы, состоящей из двух или нескольких планет (карликовых планет, астероидов). Однако Международный астрономический союз ещё не дал строго определения спутника, заявляя, что это будет сделано позже. В частности, МАС продолжает официально считать Харон спутником Плутона.

Помимо указанного, существуют и другие возможные способы формального определения понятия «спутник».

Судьбы спутников Солнечной системы

Когда мы смотрим на Луну ночью, трудно представить себе Землю без нее. Но однажды в будущем, Луны может и не быть. Спутники ни в коем случае не постоянные. Делая точные измерения лазерными лучами, астрономы обнаружили, что наша Луна на самом деле движется от Земли со скоростью около двух дюймов в год. Миллионы лет назад, она была гораздо ближе, чем сегодня. На самом деле, в дни, когда динозавры ходили по планете, Луна была в несколько раз больше на небе, чем сегодня. Астрономы полагают, что Луна может однажды вырваться из гравитации Земли и отправиться в космос.

Фобос — обреченный спутник Марса

Другие спутники сталкивались с подобными судьбами. Фобос — один из спутников Марса, на самом деле становится ближе к планете. Однажды он  закончит свою жизнь в огненной агонии, как только погрузиться в атмосферу Марса и в плуги красной планеты. Множество других спутников Солнечной системы могут в конечном счете быть разрушены приливными силами планеты, вокруг которой они вращаются.

Многие кольца, окружающие планеты состоят из мелких частиц льда и камня. Они могли образоваться, когда спутник или спутники были разрушены ​​действием силы тяжести планеты. С течением времени эти частицы распространяются в тонкие кольца, которые мы видим сегодня. Другие спутники рядом с кольцами удерживают их от падения друг на друга. Гравитация спутника держит частицы от вырывания из орбиты и отката назад к планете. Мы называем их спутниками-пастухами, потому что они помогают удержать кольца на линии, также как пастух удерживает овец. Если бы не эти спутники, чудесные кольца Сатурна исчезли бы миллионы лет назад.

Ссылки

Солнечная система

Основные разновидности ИСЗ

Конфигурация системы спутниковой связи зависит от типа ИСЗ, вида связи и параметров земной станции. Три основных разновидности ИСЗ в зависимости от орбиты спутника:

  • ИСЗ на высокой эллиптической орбите (ВЭО)
  • ИСЗ на геостационарной орбите (ГСО)
  • ИСЗ на низковысотной орбите (НВО)

ИСЗ на высокой эллиптической орбите (ВЭО)

Спутники типа “Молния” с периодом обращения 12 часов, наклоном орбиты 63 градуса, высотой апогея над северным полушарием 40 тыс. км.

У спутника переменная скорость. В области апогея скорость движения ИСЗ замедляется и обеспечивает радиовидимость 6…8 часов. 6…8 часов это то время, когда один спутник находится в рабочей зоне. Для обеспечения непрерывной связи на одной орбите необходимо расположить не менее трех спутников, а лучше 4.

Преимущества ИСЗ с ВСО большой размер зоны обслуживания. 

Недостатки: необходимость слежения земных антенн за спутниками и переориентация этих антенн с заходящего спутника на восходящий. 

ИСЗ на геостационарной орбите (ГСО)

ГСО это орбита, на которую если поставить спутник, он будет вращаться вместе с Землей с одинаковой скоростью. Он находится неподвижно относительно земной точки. 

ГСО — круговая орбита с периодом обращения ИСЗ 24 часа, расположенная в плоскости экватора на высоте 35 875 км с поверхности Земли. Орбита синхронно вращается с вращением Земли, поэтому спутник находится неподвижно относительно земной поверхности. 

Достоинства:

  • Зона обслуживания одного спутника достигает треть поверхности Земли, т.е. 3-х спутников достаточно для глобальной сети. 
  • Антенны земных станций не требуют систем слежения. Антенна неподвижна.
  • Не требуют сложной наземной аппаратуры, могут обеспечивать большое покрытие, но в зонах не сильно приближенных к полюсам Земли.

Недостатки:

В северных широтах спутник виден под малыми углами к горизонту и совсем не виден в приполярных областях.

Но если в южном полушарии это не так страшно, то в северном Скандинавские страны, Россия, Канада находятся достаточно близко к полюсу и там геостационарные спутники связь не обеспечивают. 

  • Ограничение на количество спутников на ГСО.
  • Достаточно высокая цена самого аппарата ИСЗ и его запуска.

ИСЗ на низковысотной орбите (НВО)


В настоящее время развиваются спутники связи на низковысотной орбите.Спутники запускаются на круговые орбиты, бывает полярная орбита, которая проходит через нулевой меридиан, плоскость которых наклонена к плоскости экватора. Наличие большого количества спутников на разных орбитах, позволяет добиться высокого покрытия поверхности Земли этими системами связи. 

Высота орбиты 200…2000 км над поверхностью Земли. Спутники относятся к легкому классу и для их запуска можно использовать недорогой носитель, либо дорогой носитель, который сразу забросит на орбиту два десятка аппаратов, которые потом выводятся в нужной точке. Покрытие может быть глобальное. 

Главный недостаток ИСЗ на НВО, спутники вращаются по круговым низким орбитам на достаточно высокой линейной скорости и от момента, когда спутник выходит в ту зону, где находится абонент, до того момента, когда он из этой зоны выходит, может проходить 20-40 минут. Для того, чтобы обеспечить хорошее покрытие, нужно много спутников. 

Спутниковая система Iridium

Система базируется на 66 лёгких (масса 689 кг) ИСЗ, равномерно размещенных на 6 НВО. Орбиты через 60 градусов охватывают всю Землю. И на каждой орбите находится по 11 спутников, которые по очереди выходят в зону в которой находится абонент. Высота основной орбиты 780 км. 

Орбиты разнесены на 30 или 60 градусов и каждый спутник поддерживает связь с тем спутником, который идет впереди и с тем, который идет сзади по его орбите. И с двумя спутниками, которые находятся на двух соседних орбитах. Такая связь позволяет передать сигнал с любого спутника на любой. Одновременно обеспечивается до 11 000 телефонных соединений. 

Если у Вас есть терминал Iridium, где бы вы не находились, вы можете установить связь. Если вы находитесь в обычной зоне, где мобильная связь работает, то ваш терминал перейдет в режим работы мобильной связи и не нужно будет нагружать спутник. Кроме основных спутников, есть 4 резервных, которые находятся на резервной орбите. 

Спутники планет Солнечной системы: Миры из камня и льда

Большинство спутников состоят в основном из камня, льда или комбинации обеих составляющих. Они гораздо менее плотные, чем планеты и не имеют металлического ядра. У некоторых, таких как у спутника Сатурна Титан, есть плотная атмосфера. Эта атмосфера дает астрономам веру, что на этом спутнике могут быть некоторые формы жизни. Так как у большинства спутников нет атмосферы, у них нет естественной защиты от метеоров.

У большинства спутников в нашей Солнечной системе есть множество кратеров на поверхности. Многие из этих спутников также показывают большое количество уникальных особенностей поверхности, такие как глубокие расколы долины и гигантские разломы. У Юпитера одни из самых увлекательных спутников в Солнечной системе. Крупнейший четыре: Ганимед, Ио, Европа, Каллисто — известны как спутники Галилея. Это потому что они были впервые обнаружены астрономом Галилео Галилеем в 1600-ых годах. Ио представляет особый интерес, потому что это был первый спутник, на котором обнаружили действующие вулканы. Космический аппарат Вояжер обнаружил массивные вулканические кратеры, извергающие расплавленную серу на сотни миль в космос. Другой спутник, который представляет интерес — Европа. С внешней стороны, кажется, что это замороженный ледяной шар. Но астрономы считают, что он может иметь жидкий океан подо льдом. Если это правда, то Европа может быть кандидатом для внеземной жизни. Считается, что примитивные формы жизни могли развиться вблизи глубоководных гидротермальных источников, похожих на те, которые недавно были обнаружили на Земле.

Спутники Марса
Естественные спутники Фобос · Деймос
Спутники Юпитера
Группа

Амальтея

Метис · Адрастея · Амальтея · Фива
Галилеевы

спутники

Ио · Европа · Ганимед · Каллисто
Группа 

Фемисто

Фемисто
Группа

Гималая

Леда · Гималия · Лиситея · Элара · S/2000 J11
Группа 

Ананке

Эвпорие · S/2003 J3 · S/2003 J18 · S/2010 J2 · Тельксиное · Эванте · Гелике · Ортозие · Иокасте · S/2003 J16 · Праксидике · Гарпалике · Мнеме · Гермиппе · Тионе · Ананке · S/2003 J15
Группа

Карме

Герсе · Этне · Кале · Тайгете · S/2003 J 19 · Халдене · S/2003 J 10 · Эриноме · Каллихоре · Калике · Карме · Пазифее · Эвкеладе · Архе · Исоное · S/2003 J 9 · S/2003 J 5
Группа Пасифе Аойде ·Каллирое · S/2010 J 1 · Коре · Киллене · S/2003 J 4 · Пасифе · Гегемоне · Синопе · Спонде · Автоное · Мегаклите · Эвридоме · S/2003 J 23
Группа

Карпо

Карпо
? S/2003 J 12 · S/2011 J 1 · S/2011 J 2 · S/2003 J 2
Спутники Сатурна
Спутники-пастухи S/2009 S1 · Пан · Дафнис · Атлас · Прометей · Пандора · Эпиметей · Янус · Эгеон
Внутренние спутники Мимас · Энцелад · Тефия · Диона · Телесто · Калипсо · Елена · Полидевк
Алькиониды Мефона · Анфа · Паллена
Внешние Рея · Титан · Гиперион · Япет
Нерегулярные Эскимосская группа: Кивиок · Иджирак · Палиак · Сиарнак · Таркек

Норвежская группа: Феба · Скади · S/2007 S2 · Сколл · S/2004 S13 · Грейп · Гирроккин · Мундильфари · Ярнсакса · S/2006 S1 · S/2004 S17 · Нарви · Бергельмир · Эгир · Суттунг · S/2004 S12 · Бестла · Фарбаути · Хати · S/2004 S7 · Трюм · S/2007 S3 · S/2006 S3 · Сурт · Кари · Фенрир · Имир · Логи · Форньот

Галльская группа: Альбиорикс · Бефинд · Эррипо · Тарвос

Спутники Урана
Внутренние спутники Корделия · Офелия · Бианка · Крессида · Дездемона · Джульетта · Порция · Розалинда · Купидон · Белинда · Пердита · Пак · Маб
Крупные спутники Миранда · Ариэль · Умбриэль · Титания · Оберон
Нерегулярные спутники Франциско · Калибан · Стефано · Тринкуло · Сикоракса · Маргарита · Просперо · Сетебос · Фердинанд
Спутники Нептуна
Регулярные Протей · Наяда · Таласса · Деспина · Галатея · Ларисса · S/2004 N 1
Нерегулярные Тритон · Нереида · Галимеда · Сао · Лаомедея · Псамафа · Несо
Спутники Плутона
Основные Харон · Стикс · Никта · Кербер · Гидра

С этим читают