Тротиловый эквивалент

Особенности использования

Тротил является взрывчатым веществом с большой мощностью, и имеет множество достоинств, которые выделяют его от других веществ. Тротил может находиться в нескольких формах:


  • гранулированная;
  • прессованная;
  • литая.

Все это позволяет использовать его не только в военном деле, но и в промышленности, например, в горной. Также тротил обладает высоким уровнем безопасности на всех этапах использования и большим сроком хранения без потери всех взрывчатых свойств, который составляет до 20 лет.

Применение тротила в подрыве боеприпасов

Часто используют тротил в соединениях с другими взрывчатыми веществами, что позволяет улучшить качество, снизить чувствительность и добиться постоянного состояния других веществ.

Основное применение тротила:

  • военное дело;
  • промышленность;
  • медицина.

Ранее тротил активно применялся в медицине, и он входил в состав некоторых медицинских препаратов. Сейчас он входит в состав антигрибковых средств. Также ученые всего мира продолжают работы по созданию взрывчатого вещества, превосходящего мощность, стабильность и другие свойства тротила.

Добавьте яркости

Разобравшись в том, как сделать дымовуху, можете поэкспериментировать с различными цветами. В домашних условия можно устроить даже цветную иллюминацию. Для изготовления понадобится 60 грамм калиевой селитры, 40 грамм сахара, а также немного красителя на ваш вкус. Смешиваете ингредиенты и в алюминиевой кастрюле ставите на медленный огонь. Непрерывно помешивая, чтобы субстанция не пригорела, доводите ее до полужидкого состояния. Когда масса станет коричневой, всыпьте чайную ложку соды, не переставая помешивать. После этого можно добавить три чайных ложки красителя. В зависимости от его тона вы можете получить цветные дымовые шашки разных оттенков.

Перемешав последний раз, даём смеси остыть до такого состояния, когда до неё можно будет дотронуться рукой. Надев перчатки, переносим массу в заранее приготовленную ёмкость (например, футляр от фотоплёнки) и плотно забиваем ее. Карандашом делаем отверстие в смеси для фитиля и вставляем его туда, плотно утрамбовав ватой. Полученную конструкцию обматываем скотчем.

Цветные дымовые шашки можно использовать для фотосессии, для придания нужной атмосферы рок-концерту и т. п.

Реферат патента 1998 года ТРОТИЛОВАЯ ШАШКА-ДЕТОНАТОР И СПОСОБ ЕЕ ИЗГОТОВЛЕНИЯ

Изобретение относится к области средств промышленного взрывания. Шашка выполняется из 45 — 62 мас.% содержащих газовые включения тротиловых гранул, промежутки между которыми заполнены литым тротилом. Шашка восприимчива к штатным средствам инициирования, обладает повышенной, практически неограниченной водостойкостью. Способ изготовления заключается в засыпке в разъемную изложницу гранул, содержащих воздушные включения, и вводе расплава с температурой 83 — 95oC в пространство между гранулами, которые предварительно, а также в процессе ввода подвергают вакуумированию до остаточного давления 1 — 300 мм рт. ст. , после чего дают выдержку для затвердевания. 2 с. и 4 з.п. ф-лы, 3 ил., 2 табл.

Общие «взрывные» качества

Подрыв шашки тринитротолуола может быть гарантированно произведен с помощью детонатора или запала. Как было отмечено, обладающее большим запасом стабильности вещество непросто подорвать «как в кино», выстрелом или даже поджогом.

Что же произойдёт, если подорвать, к примеру, 1 килограмм тротила. Взрыв, то есть мгновенная химико-физическая реакция, протечет за одну стотысячную долю секунды. Газ, образование и расширение которого и дает основную фугасную составляющую взрыва и взрывной волны, увеличиться до объема в 700 литров. Основным поражающим фактором будет взрывная волна и соответствующее изменение давления.

Защита от насекомых

Безопасным и доступным вариантом является дымовуха из спичек. Если вы опытный турист, то с собой в поход обязательно возьмёте специальные охотничьи спички, изоленту и ножницы. Для изготовления шашки необходимо обмотать спичку изолентой и обрезать остаток. Охотничья спичка лучше горит, и её труднее потушить. Получившаяся дымовуха будет гореть недолго, но позволит на некоторое время отогнать назойливых насекомых.

Этот вариант можно немного усовершенствовать. Чтобы изделие прослужило дольше, надо сложить несколько спичек вместе, внахлёст, таким образом увеличив его длину. В этом случае дымовуха подойдёт для окуривания пчелиных ульев на пасеке, поскольку дым будет оставаться безвредным для насекомых.

Октоген — полмиллиарда долларов на воздух

В 1942 году американский химик Бахманн, проводя опыты с гексогеном, случайно обнаружил новое вещество октоген, причем в виде примеси. Свою находку он предложил военным, однако те отказались. Между тем, через несколько лет, после того, как удалось стабилизировать свойства этого химического соединения, в Пентагоне всё же заинтересовались октогеном. Правда, в чистом виде в военных целях он широко не применялся, чаще всего в литьевой смеси с тротилом. Эта взрывчатка получила название «октолом». Она оказалась на 15% мощнее гексогена. Что касается её эффективности, то считается, что один килограмм октогена произведет столько же разрушений, что и четыре килограмма тротила.

Впрочем, в те годы производство октогена было в 10 раз дороже изготовления гексогена, что сдерживало его выпуск в Советском Союзе. Наши генералы подсчитали, что лучше произвести шесть снарядов с гексогеном, чем один – с октолом. Именно поэтому так дорого обошелся американцам взрыв склада боеприпасов во вьетнамском Куи-Нгоне в апреле 1969 года. Тогда официальный представитель Пентагона заявил, что из-за диверсии партизан ущерб составил 123 миллиона долларов, или примерно 0.5 млрд. долларов в нынешних ценах.

Что такое аммиачная селитра и зачем она нужна?

Аммиачная селитра (нитрат аммония) — соль азотной кислоты (NH4NO3), полученная еще в 1659 году знаменитым немецким алхимиком Иоганном Глаубером. С тех пор её использовали в качестве азотного удобрения в сельском хозяйстве и для изготовления боеприпасов в военной промышленности.

Основная опасность аммиачной селитры в быту заключается в том, что она взрывается не только под воздействием открытого огня, но и от простого нагревания, перепадов температуры или влажности. Более того, детонация возможна даже из-за давления одного мешка с селитрой на другой.

В том, что нитрат аммония в любой момент может унести сотни жизней, человечество убеждалось уже не раз. Вот подборка самых жутких и самых масштабных катастроф, причиной которых стала аммиачная селитра.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Литая тротиловая шашка-детонатор, срабатывающая от штатных средств инициирования, выполненная из содержащих газовые включения тротиловых гранул, промежутки между которыми заполнены литым тротилом, отличающаяся тем, что содержание гранул составляет от 10 до 44 мас.%.

2. Шашка-детонатор по п.1, отличающаяся тем, что снабжена полимерным корпусом.

3. Шашка-детонатор по п.2, отличающаяся тем, что полимерный корпус выполнен из полиэтилена, вторичного полиэтилена, полипропилена, вторичного полипропилена и/или их смесей.


4. Шашка-детонатор по п.3, изготовленная путем установки полимерного корпуса на оснастку и параллельной подачи при атмосферном давлении расплава тротила с температурой 85-90°С и тротиловых гранул в полимерный корпус, выполненный в виде цилиндра.

5. Шашка-детонатор по любому из пп.1-4, отличающаяся тем, что в качестве гранул используется гранулотол марки А по ГОСТ 25857 или ТУ 7276-045-07511608.

6. Литая тротиловая шашка-детонатор, срабатывающая от штатных средств инициирования, выполненная из содержащих газовые включения тротиловых гранул, промежутки между которыми заполнены литым тротилом, отличающаяся тем, что содержание гранул составляет от 10 до 44 мас.%, шашка снабжена вертикальным вкладышем с отверстием под детонатор из высокоэффективного взрывчатого материала.

7. Шашка-детонатор по п.6, отличающаяся тем, что высокоэффективный взрывчатый материал выполнен из литой смеси тротила и ТЭНа состава 50/50 мас.% или литой смеси тротила и гексогена состава 60/40 мас.%.

8. Шашка-детонатор по п.6, отличающаяся тем, что снабжена корпусом, выполненным из полимерного материала.

9. Шашка-детонатор по п.8, отличающаяся тем, что полимерный корпус выполнен из полиэтилена, вторичного полиэтилена, полипропилена, вторичного полипропилена и/или их смесей.

10. Шашка-детонатор по п.8, изготовленная путем установки вкладыша на стержень для формирования гнезда под детонатор, установки полимерного корпуса на оснастку и параллельной подачи при атмосферном давлении расплава тротила с температурой 85-90°С и тротиловых гранул в полимерный корпус, выполненный в виде цилиндра.

11. Шашка-детонатор по любому из пп.7-10, отличающаяся тем, что в качестве гранул используется гранулотол марки А по ГОСТ 25857 или ТУ 7276-045-07511608.

12. Литая тротиловая шашка-детонатор, срабатывающая от штатных средств инициирования, выполненная из содержащих газовые включения тротиловых гранул, промежутки между которыми заполнены литым тротилом, отличающаяся тем, что содержание гранул составляет от 10 до 44 мас.%, а в зоне активной части детонатора имеется слой, содержащий высокоэффективный взрывчатый материал.

13. Шашка-детонатор по п.12, отличающаяся тем, что высокоэффективный взрывчатый материал выполнен из литой смеси тротила и ТЭНа состава 50/50 мас.% или литой смеси тротила и гексогена состава 60/40 мас.%.

14. Шашка-детонатор по п.12, отличающаяся тем, что снабжена корпусом, выполненным из полимерного материала.

15. Шашка-детонатор по п.14, отличающаяся тем, что полимерный корпус выполнен из полиэтилена, вторичного полиэтилена, полипропилена, вторичного полипропилена и/или их смесей.

16. Шашка-детонатор по п.14, отличающаяся тем, что изготавливается путем установки полимерного корпуса на оснастку и параллельной подачи при атмосферном давлении расплава тротила при температуре 85-90°С и тротиловых гранул, заливки в зоне активной части детонатора слоя высокоэффективного взрывчатого материала высотой от 10 до 60 мм с последующим параллельным добавлением расплава тротила и тротиловых гранул до верха полимерного корпуса.

17. Шашка-детонатор по любому из пп.12-16, отличающаяся тем, что в качестве гранул используется гранулотол марки А по ГОСТ 25857 или ТУ 7276-045-07511608.

История создания тротила

Дата Событие
1863 г. Создание немецким ученым Юлиусом Вильбрандом первого образца тротила
1891 г. Первое массовое изготовление и использование в Германии
1905 г. Начало экспериментов по созданию тротила в США и последующее производство
1909 г. Изготовление тротила в России и других странах

Изготовление данного взрывчатого вещества началось только в 1891 году в Германии, под руководством известного немецкого химика Генриха Каста. Изготовление и испытания проводились под грифом «Секретно», где в последующем было присуждено название — тротил.

В 1905 году в Германии была изготовлена первая крупная партия, имеющая вес более ста тон. В этом же году  состав тротила был раскрыт американскими учеными, которые начали работу по производству взрывчатки в США. Далее секрет был открыт всему миру, после чего началось производство в России и других странах мира.

К началу Первой мировой войны было изготовлено большое количество тротила, который активно использовался всеми странами. Работы по созданию совершенного состава взрывчатого вещества продолжались вплоть до 1940 года, после чего была утверждена окончательная формула тротила.

Самое массовое изготовление взрывчатого вещества было зафиксировано в США в 1945 году, когда на военные и промышленные нужды было изготовлено более 1 млн тон.

Самый безопасный взрыв: Красное море, 1953 год

Порт-Судан

Спустя восемь лет другой пароход повторил судьбу «Гранкана». К счастью, этот взрыв не унёс ни одной жизни, хотя по мощности практически не уступал катастрофе в Оппау, разрушившей город и его окрестности.

В январе 1953 года финское грузовое судно «Тиррения» находилось в Красном море на пути из румынского порта Констанца в Китай с грузом около 4000 тонн аммиачной селитры.

Вечером 23 января, когда корабль находился к востоку от Порт-Судана, экипаж заметил дым, поднимающийся из трюма. Как и на «Гранкане», было принято решение тушить пожар при помощи пара, но эти попытки не увенчались успехом.

Как только стало ясно, что пожар усилился, люди покинули корабль на шлюпках. Ближе к ночи их заметили с проходившего мимо танкера и подняли на борт. По сообщению капитана танкера Олава Рингдала, «Тиррения» взорвалась в 22 часа 58 минут по Гринвичу. При взрыве никто не пострадал.

Получение

Тетрил обычно получают нитрованием диметиланилина. При приливании диметиланилина к конц. азотной кислоте происходит самовоспламенение. В промышленности тетрил получают растворением диметиланилина в избытке 92-96%-й серной кислоты (обычно 1 ч диметиланилина на 8-14 ч 96%-й серной кислоты) и нитрованием полученного раствора сульфата диметиланилина конц. азотной кислотой или меланжем. Реакция сопровождается окислением одной метиловой группы и большим тепловыделением. На протяжении всего процесса следует тщательно контролировать ход реакции и температуру, иначе возможно осмоление диметиланилина или даже вспышка. В Германии во время 2 мировой войны тетрил производили из динитрохлорбензола, обработкой его водным раствором метиламина и нитрованием полученного динитрометиланилина нитрующей смесью до тетрила. Этот способ был более безопасен и позволяет использовать динитрохлорбензол – широко доступное сырье.


Очень чистый тетрил может быть получен нитрованием диметиланилина большим избытком азотной кислоты плотностью 1,4 (65 %). Для этого 1 часть диметиланилина растворяют в 40 частях азотной кислоты при температуре до 7°С

Затем температуру осторожно повышают до 60°С, а по завершении относительно бурной реакции окисления нагревают до 90°С. По охлаждении выделяется тетрил с 78%-м выходом

Также тетрил можно получить двустадийным нитрованием монометиланилина азотной кислотой. На первой стадии монометиланилин нитруется 50-60% азотной кислотой до динитрометиланилина, а на второй до тетрила.

Изготовление тротила

Взрывчатка является твердым веществом с высокой температурой плавления, технология производства тротила достаточно сложна. Всего существует два способа его получения:

  • одностадийный;
  • двухстадийный.

Одностадийный способ включает в себя такие процессы:

  • сушка при температуре 100°С;
  • измельчение и просеивание;
  • получение вещества и промывка;
  • кристаллизация;
  • сушка при температуре 100°С;
  • просеивание;
  • укупорка.

Во время изготовления тратила первым этапом является сушка, последующее измельчение и просеивание вещества. Далее идет смешивание с нитротором, азотной кислотой и пентаэритритом. Смешивание происходит с определенной скоростью, которая не позволяет подняться температуре веществ до 20°С.

После сушки вещество принимает кристаллический вид. Полученные кристаллы проходят дополнительную сушку, просеивание и отжимание. Последним процессом в изготовлении тротила является укупорка с использованием спирта.

Двухстадийный способ включает в себя:

  • получение сернокислотного эфира;
  • смешивание дополнительных веществ с одновременной сушкой при температуре до 60°С.

Данный способ изготовления тротила появился первым и использовался по причинам простоты и перспективности. Во время смешивания и сушки добавлялась азотная кислота, пантаэритрит и серная кислота. Все эти вещества смешивались поэтапно при различной температуре нагревания.

https://youtube.com/watch?v=LJypJslFUKs

Создание тротила

В 1863 году химик Юлиус Вильбрантд, работавший в университете Гёттингена, получил интересный результат в ходе одного из экспериментов с остатками коксованного угля и нефтью. Полученный состав прекрасно горел, выделяя яркое пламя и много черного дыма. Вильбратд окрестил свой состав тринитротолуолом, однако на несколько десятков лет полученное вещество оказалось забыто.

В начале 1890-х о составе пришлось вспомнить в связи с развитием вооруженных сил. Находившиеся на тот момент на вооружении армий мира взрывчатые вещества (ВВ) обладали множеством минусов. Динамит отличается высокой чувствительностью, и снаряжать им боеприпасы опасно для самих работников фабрик, не говоря о войсках, а о транспортировке во время военных действий, вообще не приходилось и думать.

Гексоген и пикриновая кислота также крайне чувствительны, мелинит вступает в активную связь с металлом оболочки снаряда, основанные на селитре и аммиаке ВВ отличаются гигроскопичностью и быстро выходят из строя.

На фоне этих веществ тринитротолуол был едва ли не идеальной взрывчаткой, а развитие нефтяной промышленности, обеспечило его быстрое распространение.

Большую роль в этом сыграл химик Генрих Каст, по сути доведший до конца работу Вильбрантда и давший возможность производить тринитротолуол в промышленных масштабах. Кстати, название тротил было придумано для того, что бы сбить с толку русскую и иные разведки, активно искавшие, чем это занимается немецкая химическая промышленность. Происхождение слова простое, это сокращенная форма от полного названия взрывчатки.

Шило в мешке утаить невозможно, поэтому уже в 1909 году в России на Охтинском заводе стала производиться эта секретная новая взрывчатка. Первая Мировая война прошла под знаком равенства пикриновой кислоты и тола в качестве ВВ, но в послевоенный период и в эпоху Второй Мировой войны тротил стал главной взрывчаткой на планете.

Первоначально толуол, продукт, получаемый из нефти, нитровали в три стадии с последующей очисткой и кристаллизацией с помощью этилового спирта. Трудоемкий процесс, в котором было задействовано ценное, «дефицитное» сырье, изменили в 1932-1933 годах.

Модернизация позволила пустить спирт на более важные нужды, его заменили кислотой. Сильно мешал факт прерывающегося производства взрывчатки. В 1936 году был опробована и принята технология производства тринитротолуола непрерывного типа в четыре фазы. В послевоенное время создавались новые способы непрерывного производства тротила для армии и промышленности.

Особенностью их было использование концентрированных кислот. В этом отечественная промышленность серьезно обгоняла западных конкурентов, так как и в Германии, и в Англии, и в США производство ВВ было не так дешево и эффективно как в СССР, и, как правило, было прерывающегося типа.

Примечания[ | ]

  1. 123 https://www.cdc.gov/niosh/npg/npgd0641.html
  2. Тротил не взрывается, если его уронить, даже если его прострелить из винтовки. Для взрыва требуется сильная ударная волна (детонация) Ландау Л. Д. ,Китайгородский А. И. Физика для всех: Молекулы. — 5-е изд., испр. — М.: Наука. Главная редакция физ.-мат. литературы, 1982. — с. 167—172. — 208 с.
  3. 2,4,6- Тринитротолуол
  4. К. В. Волков, В. В. Даниленко, В. И. Елин //. Физика горения и взрыва,1990, вып. 26, т. 3, с. 123—125..
  5. СПОСОБ В.Ф.МОЖАРОВСКОГО КОМПЛЕКСНОГО ЭТИОЛОГИЧЕСКОГО ЛЕЧЕНИЯ ПСОРИАЗА ПРОТИВОВИРУСНЫМ И ПРОТИВОМИКРОБНЫМИ ПРЕПАРАТАМИ «ЛИКВАЦИД», «ТРИНОЛ», «ТРИСОЛИД» И «ТРОТИПИД» — Патент РФ 2102072 (неопр.) . ru-patent.info. Дата обращения 23 января 2020.

Тротиловый эквивалент

Тротиловый эквивалент выражается в тоннах, кило-тоннах и мегатоннах.  

Тротиловый эквивалент может определяться для оценки уровня воздействия взрыва парогазовой среды или конденсированных ВВ с целью разработки эффективных защитных мероприятий.  

Тротиловый эквивалент — это вес обычного взрывчатого вещества ( тротила), энергия взрыва которого равна энергии взрыва данного ядерного боеприпаса.  

Тротиловый эквивалент — энергия взрыва атомной бомбы в сравнении с энергией, выделяющейся при взрыве тринитротолуола ( ТНТ, тротила); например, взрыв 1 кг урана-235 или плутония-239 при расщеплении всех ядер эквивалентен взрыву 20 000 т тротила.  

Тротиловый эквивалент может определяться для оценки уровня воздействия взрыва парогазовой среды или конденсированных ВВ с целью разработки эффективных защитных мероприятий.  

Тротиловым эквивалентом называют — пес обычного взрывчатого.  

Тротиловым эквивалентом называют массу обычного взрывчатого вещества ( тротила), энергия взрыва которого равна энергии взрыва данного ядерного боеприпаса. Тротиловый эквивалент измеряется в тоннах, килотоннах или мегатоннах.  

Этим тротиловым эквивалентам соответствует энергия взрыва, равная 1500 — 1000 МДж. На основании анализа 16 — осколков, расположенных на наиболее удаленных расстояниях от места взрыва ( 160 — 180 м), рассчитано давление в аппаратуре в момент, предшествовавший взрыву.  

Под тротиловым эквивалентом понимают такое количество тротила, которое при стандартном испытании на баллистическом маятнике дает тот же эффект, что и взрыв данного количества испы туемого ВВ. Тротиловый эквивалент нельзя определить теоретически.  

Расчетные значения тротиловых эквивалентов ( R отличаются от наблюдаемых в зонах соответствующих уровней разрушения.  

Расчетные значения тротиловых эквивалентов ( R t отличаются от наблюдаемых в зонах соответствующих уровней разрушения.  

Здесь 7ТНТ — тротиловый эквивалент, равный массе тринитротолуола ( тротила), при взрыве которой выделяется такое же количество энергии, как и при взрыве рассматриваемого взрывчатого вещества G, кг.  

Таким образом, по тротиловому эквиваленту и теплотам химических реакций при взрывах определяют возможную силу взрыва в закрытой аппаратуре соответствующих химико-технологических процессов.  

Мощность ядерных боеприпасов измеряется тротиловым эквивалентом.  

Мощность ядерного оружия выражается тротиловым эквивалентом — количеством тротилового заряда в тоннах, энергия взрыва которого равна энергии взрыва данного ядерного заряда. Мощность различных ядерных боеприпасов измеряют в сотнях, тысячах ( кило) и мил — лионах ( мега) тонн.  

Астролит – хорош, но дурно пахнет

В начале 60-х прошлого века американская компания EXCOA презентовала новое взрывчатое вещество на основе гидразина, заявив, что оно в 20 раз мощнее тротила. Прибывших на испытания генералов Пентагона сбил с ног жуткий запах заброшенного общественного туалета. Впрочем, они были готовы его потерпеть. Однако ряд тестов с авиабомбами, заправленными астролитом А 1-5 показал, что взрывчатка оказалось лишь в два раза мощнее тротила.

После того, как чиновники Пентагона забраковали эту бомбу, инженеры из EXCOA предложили новую версию этого взрывчатого вещества уже под маркой «АСТРА-ПАК», причем для рытья окопов методом направленного взрыва. На рекламном ролике солдат тонкой струйкой поливал землю, а затем из укрытия детонировал жидкость. И окоп в человеческий рост – был готов. По своей инициативе компания EXCOA выпустила 1000 комплектов такой взрывчатки и отправила на вьетнамский фронт.

Химические и физические свойства ВВ

Тротил представляет собой кристаллы разных оттенков желтого или коричневого цветов, реже бесцветные. Плотность зависит от состояния, так:

  • 1,663 г/см3,плотность кристаллов;
  • 1,54-1,59 г/см3 плотность литого вещества.

Боевые качества тринитротолуола:

  • от 4103 кДж/кг до 4605 кДж/кг теплота взрыва;
  • 6950 м/с скорость детонации;
  • 16 мм бризантность по методу Гесса;
  • 3,9 мм бризантность методом Касса;
  • 730 л/кг объем выделения газа при взрыве;
  • 285 мл фугасность.

После 15 лет хранения состав становится более взрывоопасен при внешних воздействиях, о чем необходимо помнить в случае обнаружения целых боеприпасов времен Великой Отечественной войны.

ВВ не растворяется в воде, а так же не изменяет своих качеств после смачивания. Имеется активная реакция со спиртовыми и водяными щелочными растворами. На вкус горький.

Под воздействием Солнца тротил темнеет, до темно-коричневого цвета. Интересно, что в отличие от прочих взрывчаток, тол не реагирует на внешнее воздействие. Можно ударить по нему молотком, можно выстрелить в емкость с тринитротолуолом, его можно даже плавить. Последний пункт стал наиболее притягательным для военных и гражданских, связанных с взрывчаткой.

После этого масса может заполнить любую полость, буквально как пластилин. Не стоит и говорить, что ее можно резать, сверлить и делать с ней практически все что угодно.

Под воздействием огня толовая масса начинает гореть, как правило, огнем желтого цвета и выделяя черный коптящий дым. Отметим, что исключение составляет порошкообразное ВВ с некоторыми примесями, делающее взрывчатку более нестабильной.

Физические и химические свойства тротила

Тротил получают с помощью нитрования такого вещества, как тол. Всего существует шесть изомеров, которые имеют одну и ту же формулу, но разно положение относительно бензольного ядра, что приводит к различным химическим свойствам.

Основные химические свойства тротила:

температура затвердевания 85°С
температура плавления 82°С
температура кипения 295°С
теплота плавления 21,41 ккал/г
теплота кристаллизации 5,6 ккал/моль
гигроскопичность 0,05%
растворимость — при температуре воды 25°С/100°С 0,02/0,15

Основные физические свойства тротила:

состояние твердое
скорость детонации (при плотности тротила 1,64 кг/м3) 6,95 сек.
дробящее воздействие по Гессу 16 мм
дробящее воздействие по Касту 3,9 мм
объем газообразования при детонации 730 л/кг
фугасность 285 мл
чувствительность при падении (10 кг тротила с высоты 25 см) до 8% детонации
максимальный срок хранения 25 лет, после чего возрастает чувствительность к детонации

Плотность тротила

Плотностью является соотношение массы тела к занимаемому объему. Плотность взрывчатого вещества составляет 1654 кг/м3.

Мощность

Мощность взрыва тротила измеряется в тротиловом эквиваленте. При взрыве тротила выделяется энергия, которая составляется 4184 Джоулей или 1000 термохимических калорий на 1 грамм тротила.

Теплота взрыва

Теплотой взрыва тротила называется объем энергии, выделяемый при взрывчатом вращении. При взрыве 1 кг тротила она составляет от 4100 до 4700 кДж.

Дробящее воздействие

Дробящее воздействие (бризантность) является одной из характеристик взрывчатых веществ, которая определяет способность вещества на послевзрывное воздействие в окружающей среде. Бризантность тротила составляет в 16,5 мм, что на порядок выше других веществ, таких как гексоген (4,2 мм) и октоген (5,4 мм).

Тротиловый эквивалент

Тротиловым эквивалентом называется мера энерговыделения при взрыве взрывчатых веществ и определяющая количество исходящей энергии. Данная мера используется для вычислений мощности взрыва, и составляет 4184 Дж на 1000 кал/г.

Взрыв тротилового заряда весом в 100 кг

В тротиловом эквиваленте проходит измерение и сравнение мощности взрывчатых веществ в соотношении с тротилом.

Название взрывчатого вещества Мощность
тротил 1,0
тринитрорезорцинат свинца (ТНРС) 0,39
порох 0,55 -0,66
тетрил (мощнее тротила) 1,25
гексоген 1,6
тритонал 1,6
Этиленгликольдинитрат (ЭГДН) 1,6
Октоген 1,7

Литература

  • Нитротолуолы // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.
  • Химическая энциклопедия / Редкол.: Кнунянц И. Л. и др. — М.: Советская энциклопедия, 1992. — Т. 3. — 639 с. — ISBN 5-82270-039-8.
  • Справочник химика / Редкол.: Никольский Б. П. и др. — 3-е изд., испр. — Л.: Химия, 1971. — Т. 2. — 1168 с.
  • Несмеянов А. Н., Несмеянов Н. А. Начала органической химии. В 2-х томах. — М.: «Химия», 1970. — Т. 2. — 824 с.
  • Общая органическая химия / Под ред. Бартон Д. — М.: «Химия», 1982. — Т. 3. — 738 с.
  • Орлова Е. Ю. Химия и технология бризантных взрывчатых веществ. — Изд. второе, перер. и доп. — Л.: «Химия», 1972. — 688 с.

Самый мощный взрыв: Оппау, 1921 год

Вид на завод в Оппау после взрыва

Техногенная катастрофа на химическом предприятии компании BASF, расположенном близ городка Оппау, в области Пфальц (Германия), стала самым мощным взрывом с участием нитрата аммония.

Взрыв прогремел 21 сентября 1921 года на заводе анилиновых красителей и удобрений. Запасы сульфата и нитрата аммония осенью не были востребованы и до весны хранились в выработанном глиняном карьере. При таком хранении они неизбежно слёживались, и на заводе использовали взрывчатку для их раздробления.

Подобный метод применялся на заводе десятки тысяч раз без всяких происшествий. Но на этот раз что-то пошло не так. По одной из версий, из-за плохого перемешивания содержание нитрата аммония в части запасов было выше обычного. По другой — подрядчик решил сэкономить и выбрал вместо чёрного пороха более мощную взрывчатку из бертолетовой соли с бензином.

Взорвалось 12 тысяч тонн смеси, в которой было около 4500 тонн нитрата аммония. Энергия взрыва оценивается в четыре-пять килотонн, а за ним последовал пожар, растянувшийся на несколько дней.

Большая часть строений в Оппау была разрушена, как и близлежащие деревни Франкенталь и Эдигхайм. Стоявшие на близлежащих станциях поезда были сброшены с путей, а в радиусе 70 километров были выбиты стёкла. Звук взрыва был слышен даже в Мюнхене — за 300 километров от Оппау.

Жертвами катастрофы стал 561 человек, и ещё больше тысячи получили ранения. Спустя десятилетия в Германии начали ходить слухи о том, что на самом деле в Оппау взорвался ядерный снаряд, придуманный немцами ещё тогда. А ещё этот взрыв попал в роман Алексея Толстого «Гиперболоид инженера Гарина».

Первая помощь и лечение

При острых интоксикациях пострадавшего следует немедленно вывести из загазованного помещения, снять загрязненную Т. одежду. При попадании продукта на кожу обильно промывают загрязненные места водой и слабо-розовым раствором перманганата калия. Противопоказаны тепловые процедуры, усиливающие образование метгемоглобина, в частности горячая ванна или душ. При выраженной метгемоглобинемии с целью усиления процесса деметгемоглобинизации показано введение 1% р-ра метиленового синего в 40% р-ре глюкозы. При гипоксемии с целью повышения количества растворенного в плазме кислорода — оксигенотерапия, при гипокапнии — карбоген. При тяжелых поражениях печени — в первые сутки форсированный диурез, трасилол, контрикал, липотропные средства — холина хлорид, метионин, липамид. При высокой активности процесса — стероидные гормоны. По показаниям назначают сердечно-сосудистые средства.

При хрон. интоксикациях, сопровождающихся преимущественным поражением печени, показаны витамины группы В, препараты липотропного действия (холина хлорид, липоевая, фолиевая к-ты). В последующем показаны сан.-кур. лечение (Ессентуки, Железноводск), препараты аминохинолинового ряда. При дискинезии желчных путей применяют желчегонные и спазмолитические средства.

Экспертиза трудоспособности. При начальных легкообратимых проявлениях воздействия Т. больного временно переводят на другую работу, при выраженных стойких явлениях — направляют на ВТЭК.

Профилактика отравлений включает механизацию производственных процессов, герметизацию аппаратуры, улучшение вентиляции. Большое значение имеют частая смена спецодежды, ежедневный теплый душ после работы, периодический сан. инструктаж работающих. Обязательно проведение предварительного и периодических мед. осмотров (см. Медицинский осмотр).

Библиогр.: Артамонова В. Г. и Шаталов H. Н. Профессиональные болезни, с. 293, М., 1982; Вредные вещества в промышленности, под ред. Н. В. Лазарева и Э. Н. Левиной, т. 2, с. 259, Л., 1976; Кончаловская Н. М., Попова Т. Б. и Бялко Н. К. Современное состояние проблемы токсического гепатита, Гиг. труда и проф. заболев., № 12, с. 10, 1974; Профессиональные болезни, под ред. E. М. Тареева и А. А. Безродных, с. 209, М., 1976; Раше век а я А. М. и др. Профессиональные болезни, с. 283, М., 1973; Руководство по профессиональным заболеваниям, под ред. Н. Ф. Измерова, т. 1, с. 125, М., 1983.


С этим читают