Космология

Примечания

  1. Jarosik, N., et.al. (WMAP Collaboration). Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Sky Maps, Systematic Errors, and Basic Results(неопр.) (PDF). nasa.gov. Дата обращения 4 декабря 2010. Архивировано 16 августа 2012 года. (from NASA’s WMAP Documents page)
  2. 12Planck Collaboration. Planck 2020 results : XIII. Cosmological parameters : // Astronomy and Astrophysics. — 2020. — Т. 594 (September). — Стр. 31, строки 7 и 18, последняя колонка. — DOI:10.1051/0004-6361/201525830.
  3. Астронет > Вселенная
  4. Архивированная копия (неопр.) (недоступная ссылка). Дата обращения 26 октября 2007. Архивировано 30 сентября 2008 года.
  5. Gratton Raffaele G., Fusi Pecci Flavio, Carretta Eugenio и др. Ages of Globular Clusters from HIPPARCOS Parallaxes of Local Subdwarfs. — Astrophysical Journal, 1997.
  6. Peterson Charles J. Ages of globular clusters. — Astronomical Society of the Pacific, 1987.
  7. 12Harvey B. Richer et al. Hubble Space Telescope Observations of White Dwarfs in the Globular Cluster M4. — Astrophysical Journal Letters, 1995.
  8. Moehler S, Bono G. White Dwarfs in Globular Clusters. — 2008.
  9. Hosford A., Ryan S. G., García Pérez A. E. и др. Lithium abundances of halo dwarfs based on excitation temperature. I. Local thermodynamic equilibrium // Astronomy and Astrophysics. — 2009.
  10. Sbordone, L.; Bonifacio, P.; Caffau, E. Lithium abundances in extremely metal-poor turn-off stars. — 2012.
  11. Schatz Hendrik, Toenjes Ralf, Pfeiffer Bernd. Thorium and Uranium Chronometers Applied to CS 31082-001. — The Astrophysical Journal, 2002.
  12. N. Dauphas. URANIUM-THORIUM COSMOCHRONOLOGY. — 2005.
  13. Izotov, Yuri I.; Thuan, Trinh X. The Primordial Abundance of 4He Revisited. — Astrophysical Journal, 1998.
  14. Izotov, Yuri I.; Thuan, Trinh X. The primordial abundance of 4He: evidence for non-standard big bang nucleosynthesis. — The Astrophysical Journal Letter, 2010.
  15. Peimbert, Manuel. The Primordial Helium Abundance. — 2008.

Космические ритмы

30 июня 2001 года NASA отправило в космос зонд Explorer 80, через два года переименованный в WMAP, Wilkinson Microwave Anisotropy Probe. Его аппаратура позволила регистрировать температурные флуктуации микроволнового реликтового излучения с угловым разрешением менее трех десятых градуса. Тогда уже было известно, что спектр этого излучения почти полностью совпадает со спектром идеального черного тела, нагретого до 2,725 К, а колебания его температуры при «крупнозернистых» измерениях с угловым разрешением в 10 градусов не превышают 0,000036 К. Однако на «мелкозернистой» шкале зонда WMAP амплитуды таких флуктуаций были в шесть раз больше (около 0,0002 К). Реликтовое излучение оказалось пятнистым, тесно испещренным чуть более и чуть менее нагретыми участками.


Флуктуации реликтового излучения порождены колебаниями плотности электронно-фотонного газа, который некогда заполнял космическое пространство. Она упала почти до нуля приблизительно через 380 000 лет после Большого взрыва, когда практически все свободные электроны соединились с ядрами водорода, гелия и лития и тем самым положили начало нейтральным атомам. Пока этого не произошло, в электронно-фотонном газе распространялись звуковые волны, на которые влияли гравитационные поля частиц темной материи. Эти волны, или, как говорят астрофизики, акустические осцилляции, наложили отпечаток на спектр реликтового излучения. Этот спектр можно расшифровать при помощи теоретического аппарата космологии и магнитной гидродинамики, что дает возможность по‑новому оценить возраст Вселенной. Как показывают новейшие вычисления, его наиболее вероятная протяженность составляет 13,72 млрд лет. Она и считается сейчас стандартной оценкой времени жизни Вселенной

Если принять во внимание все возможные неточности, допуски и приближения, можно заключить, что, согласно результатам зонда WMAP, Вселенная существует от 13,5 до 14 млрд лет

Таким образом, астрономы, оценивая возраст Вселенной тремя различными способами, получили вполне совместимые результаты. Поэтому теперь мы знаем (или, выражаясь осторожней, думаем, что знаем), когда возникло наше мироздание — во всяком случае, с точностью до нескольких сотен миллионов лет. Вероятно, потомки внесут решение этой вековой загадки в перечень самых замечательных достижений астрономии и астрофизики.

Статья «Возраст мироздания» опубликована в журнале «Популярная механика» (№5, Май 2012).

Ссылки[править | править код]

^ Возраст Вселенной с Новой Точностью. Восстановленный на 2006-12-29. ^ b Spergel, D. N.; и др. (2003). «Первое-летнее Микроволновое Исследование Анизотропии Wilkinson (WMAP) Наблюдения: Определение(Намерение) Космологических Параметров». Астрофизический Ряд Приложения Журнала 148: 175—194. DOI:10.1086/377226. ^ Вселенная, замеченная под Gran Sasso гора, кажется, старше чем ожидаемый. Иституто Назайонэйл ди Физика Наклер (13 мая 2004). ^ Imbriani, Г; и др. (2004). «Узкое место горения(сжигания) начальника морских операций и возраста Шаровидных Групп». A*A 420: 625—629. DOI:10.1051/0004-6361:20040981. ^ Bolte, M.; C. J. Хоган (3 августа 2002). «Конфликт по возрасту Вселенной». 376: 399—402. DOI:10.1038/376399a0. ^ Prochaska, Джейсон Кс.; и др. (20 сентября 2003). «Отношение Металлических свойств возраста Вселенной в Нейтральном Газе: Первые 100 Заглушенных Ly α Системы». Астрофизический Журнал 595: L9-L12. ^ Loredo, T. J.. Обещание Вывода Bayesian для Астрофизики (PDF). ^ Colistete, R.; J. C. Fabris и S. V. B. Concalves (2005). «Статистика Bayesian и Ограничения Параметра на Обобщенную Газовую Модель Chaplygin Используя SNe ia Данные». Международный Журнал Современной Физики D 14 (5): 775—796. arXiv:astro-ph/0409245.

Хаббловское время

Но вопросом о возрасте мироздания занимался не только телескоп, названый в честь ученого, но и сам ученый, американский астроном Эдвин Хаббл. Ему удалось вывести свою известную формулу v = H*D, где v – скорость расширения Вселенной, D – расстояние от наблюдаемой галактики до наблюдателя, а H – постоянная Хаббла, которая обратно пропорциональна времени. О существовании постоянной Хаббла, как величины, определяющей зависимость между расстоянием до объекта и скоростью его удаления, впервые предположил священник астроном из Бельгии — Жорж Леметр. Согласно его идее, мир произошел из одного, условно говоря, атома, а после — стал расширяться. Позже, эта теория шутливо была названа «Большим Взрывом», но в дальнейшем этот термин прочно закрепился в космологии.

Э.П. Хаббл со снимком галактики Андромеда в руках


Спустя некоторое время, в 1929 году Э. Хаббл получил более точное значение упомянутой постоянной. Очевидно, что возраст мироздания напрямую зависит от постоянной Хаббла. Изначально, используя имеющуюся модель Вселенной, ученые рассчитали, что величину, обратно пропорциональную постоянной Хаббла нужно умножить на 2/3. Однако в таком случае искомая величина составляет около 1,2 млрд лет, число, близкое к тому, что предложили индуисты еще в 150-м году до н.э. Впрочем, к концу XX-го века уже были получены астрономические данные, которые говорили о возрасте 13-15 млрд лет.

Как выяснилось, причиной неправильной оценки стали неверные представления о расширении Вселенной. Только в 1999-м году две группы астрономов смогли доказать, что последние 5-6 млрд лет расширение космического пространства ускоряется, а не замедляется, как считалось ранее. По современным подсчетам этим методом ученые вывели значение 13,798 ± 0,037 лет.

Гадание по камням

Со второй половины XVIII века ученые начали оценивать возраст Земли и Солнца на основе физических моделей. Так, в 1787 году французский натуралист Жорж-Луи Леклерк пришел к выводу, что, если бы наша планета при рождении была шаром из расплавленного железа, ей нужно было бы от 75 до 168 тысяч лет, чтобы остыть до нынешней температуры. Через 108 лет ирландский математик и инженер Джон Перри заново просчитал тепловую историю Земли и определил ее возраст в 2−3 млрд лет. В самом начале XX столетия лорд Кельвин пришел к выводу, что если Солнце постепенно сжимается и светит исключительно за счет высвобождения гравитационной энергии, то его возраст (и, следовательно, максимальный возраст Земли и остальных планет) может составить несколько сотен миллионов лет. Но в то время геологи не смогли ни подтвердить, ни опровергнуть эти оценки из-за отсутствия надежных методов геохронологии.

В середине первого десятилетия ХХ века Эрнест Резерфорд и американский химик Бертрам Болтвуд разработали основы радиометрической датировки земных пород, которая показала, что Перри был много ближе к истине. В 1920-х были найдены образцы минералов, чей радиометрический возраст приближался к 2 млрд лет. Позднее геологи не раз повышали эту величину, и к настоящему времени она выросла более чем вдвое — до 4,4 млрд. Дополнительные данные предоставляет исследование «небесных камней» — метеоритов. Почти все радиометрические оценки их возраста укладываются в интервал 4,4−4,6 млрд лет.

Современная гелиосейсмология позволяет непосредственно определить и возраст Солнца, который, по последним данным, составляет 4,56 — 4,58 млрд лет. Поскольку продолжительность гравитационной конденсации протосолнечного облака исчислялась всего лишь миллионами лет, можно уверенно утверждать, что от начала этого процесса до наших дней прошло не более 4,6 млрд лет. При этом солнечное вещество содержит множество элементов тяжелее гелия, которые образовались в термоядерных топках массивных звезд прежних поколений, выгоревших и взорвавшихся сверхновыми. Это означает, что протяженность существования Вселенной сильно превышает возраст Солнечной системы. Чтобы определить меру этого превышения, нужно выйти сначала в нашу Галактику, а затем и за ее пределы.

Наука Путешествие по Луне в 4K: ютубер осовременил запись с лунного ровера

КОСМОЛОГИЧЕСКИЕ ДАННЫЕ


Под космологическими данными понимают результаты экспериментов и наблюдений, имеющие отношение к Вселенной в целом в широком диапазоне пространства и времени. Любая мыслимая космологическая модель должна удовлетворять этим данным. Можно выделить 6 основных наблюдательных фактов, которые должна объяснить космология:

1. В больших масштабах Вселенная однородна и изотропна, т.е. галактики и их скопления распределены в пространстве равномерно (однородно), а их движение хаотично и не имеет явно выделенного направления (изотропно). Принцип Коперника, «сдвинувшего Землю из центра мира», был обобщен астрономами на Солнечную систему и нашу Галактику, которые также оказались вполне рядовыми. Поэтому, исключая мелкие неоднородности в распределении галактик и их скоплений, астрономы считают Вселенную такой же однородной везде, как и вблизи нас.

2. Вселенная расширяется. Галактики удаляются друг от друга. Это обнаружил американский астроном Э.Хаббл в 1929. Закон Хаббла гласит: чем дальше галактика, тем быстрее она удаляется от нас. Но это не означает, что мы находимся в центре Вселенной: в любой другой галактике наблюдатели видят то же самое. С помощью новых телескопов астрономы углубились во Вселенную значительно дальше, чем Хаббл, но его закон остался верен.

3. Пространство вокруг Земли заполнено фоновым микроволновым радиоизлучением. Открытое в 1965, оно стало, наряду с галактиками, главным объектом космологии. Его важным свойством является высокая изотропность (независимость от направления), указывающая на его связь с далекими областями Вселенной и подтверждающая их высокую однородность. Если бы это было излучение нашей Галактики, то оно отражало бы ее структуру. Но эксперименты на баллонах и спутниках доказали, что это излучение в высшей степени однородно и имеет спектр излучения абсолютно черного тела с температурой около 3 К. Очевидно, это реликтовое излучение молодой и горячей Вселенной, сильно остывшее в результате ее расширения.

4. Возраст Земли, метеоритов и самых старых звезд немногим меньше возраста Вселенной, вычисленного по скорости ее расширения. В соответствии с законом Хаббла Вселенная всюду расширяется с одинаковой скоростью, которую называют постоянной Хаббла Н. По ней можно оценить возраст Вселенной как 1/Н. Современные измерения Н приводят к возрасту Вселенной ок. 20 млрд. лет. Исследования продуктов радиоактивного распада в метеоритах дают возраст ок. 10 млрд. лет, а самые старые звезды имеют возраст ок. 15 млрд. лет. До 1950 расстояния до галактик недооценивались, что приводило к завышенному значению Н и малому возрасту Вселенной, меньшему возраста Земли. Чтобы разрешить это противоречие, Г.Бонди, Т.Голд и Ф.Хойл в 1948 предложили стационарную космологическую модель, в которой возраст Вселенной бесконечен, а по мере ее расширения рождается новое вещество.


5. Во всей наблюдаемой Вселенной, от близких звезд до самых далеких галактик, на каждые 10 атомов водорода приходится 1 атом гелия. Кажется невероятным, чтобы всюду местные условия были столь одинаковы. Сильная сторона модели Большого взрыва как раз в том, что она предсказывает везде одинаковое соотношение между гелием и водородом.

6. В областях Вселенной, удаленных от нас в пространстве и во времени, больше активных галактик и квазаров, чем рядом с нами. Это указывает на эволюцию Вселенной и противоречит теории стационарной Вселенной.

Что такое космос и каковы его размеры

Рассказывая про размеры Вселенной, нельзя не упомянуть про понятие «космос». Под этим термином понимают часть вселенских просторов, заполненную пустотой, лежащую за пределами атмосфер и оболочек небесных тел. Космос не пустой или полый. Он заполнен межзвездным веществом, состоящим из молекул водорода, кислорода, а также ионизирующего и электромагнитного излучения. Кроме того, присутствует темная материя, о которой уже несколько веков спорят ученые. Многие из них выдвигают гипотезу о том, что эта скрытая масса — связующее звено космического пространства.

Современные астрономы, принимая за точку отсчета нашу планету, различают:

  • Ближний космос. Для человека он начинается на высоте порядка 19 километров. Это линия Армстронга, где происходит закипание воды при температуре человеческого тела. У человека, находящегося на этой высоте без скафандра, начинает закипать слюна и слезы. Высота всего в 100 километров считается международным официальным рубежом, после которого начинается космическое пространство.
  • Околоземный космос – считается таковым до высоты около 260 тысяч километров. Это высота, до которой сила притяжения Земли превосходит притяжение Солнца. В диапазоне этих высот совершают орбитальные полеты наши космонавты и летают различные спутники.
  • Межпланетная область. На этих высотах, а точнее удалениях от Земли совершает свой полет вокруг нашей планеты ее естественный спутник –Луна. На эти расстояния летали только автоматические космические станции и астронавты НАСА при высадке на Луну в 1970 году.
  • Межзвездное пространство – удаление от Земли меряется уже в миллиардах километров.
  • Межгалактическое пространство, где величины удаления составляют около 5 квинтиллионов километров. Все это ничтожно учитывая размер мироздания.

Теория

Возраст Вселенной как функция космологических параметров

Современная оценка возраста Вселенной построена на основе одной из распространённых моделей Вселенной, так называемой стандартной космологической ΛCDM-модели. Из неё, в частности, следует, что возраст Вселенной задаётся следующим образом:

t=1H∫1dxxΩΛ+Ωkx−2+Ωdx−3+Ωlx−4,x=aa{\displaystyle t={\frac {1}{H_{0}}}\int \limits _{0}^{1}{\frac {dx}{x{\sqrt {\Omega _{\Lambda }+\Omega _{k}x^{-2}+\Omega _{d}x^{-3}+\Omega _{l}x^{-4}}}}},x={\frac {a}{a_{0}}}}

где H — постоянная Хаббла на данный момент, a — .

Основные этапы развития Вселенной

Большое значение для определения возраста Вселенной имеет периодизация основных протекавших во Вселенной процессов. В настоящее время принята следующая периодизация:

  • Самая ранняя эпоха, о которой существуют какие-либо теоретические предположения, — это планковское время (10−43с после Большого взрыва). В это время гравитационное взаимодействие отделилось от остальных фундаментальных взаимодействий. По современным представлениям, эта эпоха квантовой космологии продолжалась до времени порядка 10−11 с после Большого взрыва.
  • Следующая эпоха характеризуется рождением первоначальных частиц кварков и разделением видов взаимодействий. Эта эпоха продолжалась до времён порядка 10−2 с после Большого взрыва. В настоящее время уже существуют возможности достаточно подробного физического описания процессов этого периода.
  • Современная эпоха стандартной космологии началась через 0,01 секунды после Большого взрыва и продолжается до сих пор. В этот период образовались ядра первичных элементов, возникли звёзды, галактики, Солнечная система.

Важной вехой в истории развития Вселенной в эту эпоху считается эра рекомбинации, когда материя расширяющейся Вселенной стала прозрачной для излучения. По современным представлениям, это произошло через 380 тыс

лет после Большого взрыва. В настоящее время это излучение мы можем наблюдать в виде реликтового фона, что является важнейшим экспериментальным подтверждением существующих моделей Вселенной.


С этим читают